Time-Varying Systemic Risk : Evidence From a Dynamic Copula Model of CDS Spreads

This article proposes a new class of copula-based dynamic models for high-dimensional conditional distributions, facilitating the estimation of a wide variety of measures of systemic risk. Our proposed models draw on successful ideas from the literature on modeling high-dimensional covariance matrices and on recent work on models for general time-varying distributions. Our use of copula-based models enables the estimation of the joint model in stages, greatly reducing the computational burden. We use the proposed new models to study a collection of daily credit default swap (CDS) spreads on 100 U.S. firms over the period 2006 to 2012. We find that while the probability of distress for individual firms has greatly reduced since the financial crisis of 2008–2009, the joint probability of distress (a measure of systemic risk) is substantially higher now than in the precrisis period. Supplementary materials for this article are available online.

[1]  W. Dunsmuir,et al.  Observation-driven models for Poisson counts , 2003 .

[2]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[3]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[4]  J. Segers,et al.  Tails of correlation mixtures of elliptical copulas , 2009, 0912.3516.

[5]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[6]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[7]  Stefano Giglio,et al.  Systemic Risk and the Macroeconomy: An Empirical Evaluation , 2015 .

[8]  R. Engle,et al.  Dynamic Equicorrelation , 2011 .

[9]  A. Harvey Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series , 2013 .

[10]  C. Czado,et al.  Modeling high dimensional time-varying dependence using D-vine SCAR models , 2012, 1202.2008.

[11]  Genaro Sucarrat,et al.  EGARCH models with fat tails, skewness and leverage , 2014, Comput. Stat. Data Anal..

[12]  Zhiliang Ying,et al.  Estimation and Model Selection of Semiparametric Multivariate Survival Functions under General Censorship , 2008, Journal of econometrics.

[13]  Whitney K. Newey,et al.  LARGE SAMPLE ESTIMATION AND HYPOTHESIS , 1999 .

[14]  B. Rémillard Goodness-ofFit Tests for Copulas of Multivariate Time Series , 2017 .

[15]  Andrew Ang,et al.  Systemic Sovereign Credit Risk: Lessons from the U.S. and Europe , 2011 .

[16]  Peter Carr,et al.  A Simple Robust Link between American Puts and Credit Protection , 2008 .

[17]  Stefan Straetmans,et al.  Banking System Stability: A Cross-Atlantic Perspective , 2005, SSRN Electronic Journal.

[18]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[19]  Dong Hwan Oh,et al.  Simulated Method of Moments Estimation for Copula-Based Multivariate Models , 2013 .

[20]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[21]  Charlene Xie,et al.  Generalized Autoregressive Conditional Heteroskedasticity in Credit Risk Measurement , 2009, 2009 International Conference on Management and Service Science.

[22]  C. Brownlees,et al.  SRISK: A Conditional Capital Shortfall Measure of Systemic Risk , 2015 .

[23]  Dong Hwan Oh,et al.  Modeling Dependence in High Dimensions With Factor Copulas , 2015 .

[24]  Claudia Czado,et al.  Detecting regime switches in the dependence structure of high dimensional financial data , 2012, 1202.2009.

[25]  Xin Huang,et al.  A Framework for Assessing the Systemic Risk of Major Financial Institutions , 2009 .

[26]  A. Lo,et al.  A Survey of Systemic Risk Analytics , 2012 .

[27]  F. Blasques,et al.  Stationarity and Ergodicity of Univariate Generalized Autoregressive Score Processes , 2012 .

[28]  Xin Zhang,et al.  Conditional Euro Area Sovereign Default Risk , 2013 .

[29]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[30]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[31]  Andrew J. Patton,et al.  Dynamic Copula Models and High Frequency Data , 2013 .

[32]  Robert F. Dittmar,et al.  Cross-Market and Cross-Firm Effects in Implied Default Probabilities and Recovery Values , 2011 .

[33]  Ruey S. Tsay,et al.  High Dimensional Dynamic Stochastic Copula Models , 2014 .

[34]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[35]  K. Kroner,et al.  Another Look at Models of the Short-Term Interest Rate , 1996, Journal of Financial and Quantitative Analysis.

[36]  Kay Giesecke,et al.  Systemic Risk: What Defaults are Telling Us , 2009, Manag. Sci..

[37]  H. Manner,et al.  Dynamic stochastic copula models: Estimation, inference and applications , 2012 .

[38]  Peter F. Christoffersen,et al.  Is the Potential for International Diversification Disappearing? , 2010 .

[39]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[40]  Drew D. Creal,et al.  Market-Based Credit Ratings , 2012 .

[41]  David B. Fogel Theoretical and Empirical Properties of Evolutionary Computation , 2006 .