On the Laplacean transfer across fractal mixtures

Laplacean transport across and towards irregular interfaces have been used to model many phenomena in nature and technology. The peculiar aspect is that these phenomena take place in domains with small bulk and large interfaces in order to produce rapid and efficient transport. In this paper we perform the asymptotic homogenization analysis of Robin problems in domains with a fractal boundary.

[1]  Luke G. Rogers Degree-independent Sobolev extension on locally uniform domains , 2006 .

[2]  Vladimir Maz’ya,et al.  Differentiable Functions on Bad Domains , 1998 .

[3]  Giuseppe Buttazzo,et al.  Asymptotic Behaviour for Dirichlet Problems in Domains Bounded by Thin Layers , 1989 .

[4]  Raffaela Capitanelli,et al.  Robin boundary condition on scale irregular fractals , 2010 .

[5]  Umberto Mosco,et al.  Homogenization for conductive thin layers of pre-fractal type , 2008 .

[6]  E. Sanchez-Palencia,et al.  Phénomènes de transmission à travers des couches minces de conductivitéélevée , 1974 .

[7]  B. Sapoval,et al.  Transfer across random versus deterministic fractal interfaces. , 2000, Physical review letters.

[8]  Raffaela Capitanelli,et al.  Mixed Dirichlet-Robin Problems in Irregular Domains , 2007 .

[9]  Gunter H. Meyer,et al.  On Diffusion in a Fractured Medium , 1971 .

[10]  Umberto Mosco,et al.  Harnack Inequalities on Scale Irregular Sierpinski Gaskets , 2002 .

[11]  Nina Uraltseva,et al.  Nonlinear Problems in Mathematical Physics and Related Topics II , 2002 .

[12]  Sapoval General formulation of Laplacian transfer across irregular surfaces. , 1994, Physical review letters.

[13]  Daniel Daners,et al.  Robin boundary value problems on arbitrary domains , 2000 .

[14]  Umberto Mosco,et al.  Composite media and asymptotic dirichlet forms , 1994 .

[15]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[16]  H. Attouch Variational convergence for functions and operators , 1984 .

[17]  Umberto Mosco,et al.  An Example of Fractal Singular Homogenization , 2007 .

[18]  Raffaela Capitanelli,et al.  Transfer Across Scale Irregular Domains , 2009 .

[19]  Umberto Mosco,et al.  Gauged Sobolev inequalities , 2007 .

[20]  M. Barlow,et al.  Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets , 1997 .

[21]  Raffaela Capitanelli,et al.  Asymptotics for mixed Dirichlet-Robin problems in irregular domains , 2010 .

[22]  B. Sapoval,et al.  Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Raffaela Capitanelli,et al.  Insulating Layers and Robin Problems on Koch Mixtures , 2011 .

[24]  Raffaela Capitanelli,et al.  Trace theorems on scale irregular fractals , 2011 .

[25]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[26]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[27]  Umberto Mosco,et al.  Vanishing viscosity for fractal sets , 2010 .

[28]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[29]  Kazuhiro Kuwae,et al.  Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry , 2003 .

[30]  Avner Friedman,et al.  Reinforcement problems for elliptic equations and variational inequalities , 1980 .

[31]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[32]  Giuseppe Buttazzo,et al.  Reinforcement problems in the calculus of variations (*) (*)Financially supported by a national research project of the Italian Ministry of Education. , 1986 .

[33]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[34]  Krzysztof Burdzy,et al.  On the Robin problem in fractal domains , 2005, math/0504297.

[35]  Umberto Mosco,et al.  Fractal Reinforcement of Elastic Membranes , 2009 .

[36]  Alexander V. Kolesnikov Convergence of Dirichlet forms with changing speed measures on ℝ d , 2005 .

[37]  Kolesnikov Alexander Convergence of Dirichlet forms with changing speed measures on $\R^d$ , 2005 .