Observer/Kalman-Filter Time-Varying System Identification

the Kalman filter in the stochastic environment and an asymptotically stable realized observer are discussed briefly to develop insights for the analyst. The minimum number of repeated experiments for accurate recovery of the system Markovparameters isdetermined from these developments. The time-varying observer gains realized in the process are subsequently shown to be in consistent coordinate systems for observer state propagation. It is also demonstrated that the observer gain sequence realized in the case of the minimum number of experiments corresponds naturally to a time-varying deadbeat observer. Numerical examples demonstrate the utility of the concepts developed in the paper.

[1]  Richard W. Longman,et al.  Linear system identification via an asymptotically stable observer , 1991 .

[2]  Kefu Liu,et al.  EXTENSION OF MODAL ANALYSIS TO LINEAR TIME-VARYING SYSTEMS , 1999 .

[3]  Classification of linear time-varying difference equations under kinematic similarity , 1996 .

[4]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[5]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[6]  Nariyasu Minamide,et al.  Recursive solutions to deadbeat observers for time-varying multivariable systems , 1987 .

[7]  P. Dewilde,et al.  Time-Varying Systems and Computations , 1998 .

[8]  M. R. Myers,et al.  A comparison of extended Kalman filter, ultrasound time-of-flight measurement models for heating source localization , 2012 .

[9]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[10]  Michel Verhaegen,et al.  A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems , 1995, Autom..

[11]  John L. Crassidis,et al.  Sequential State Estimation , 2004 .

[12]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[13]  M. Majji,et al.  Time varying eigensystem realization algorithm with repeated experiments , 2008 .

[14]  Manoranjan Majji,et al.  Time-Varying Deadbeat Controller Design , 2012 .

[15]  John L. Junkins,et al.  Time-Varying Eigensystem Realization Algorithm , 2010 .

[16]  Lee,et al.  [American Institute of Aeronautics and Astronautics 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Austin, Texas ()] 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Aeroelastic Studies on a Folding Wing Configuration , 2005 .

[17]  莊哲男 Applied System Identification , 1994 .

[18]  Kefu Liu,et al.  IDENTIFICATION OF LINEAR TIME-VARYING SYSTEMS , 1997 .

[19]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[20]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[21]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[22]  Shahriar Shokoohi,et al.  Identification and model reduction of time-varying discrete-time systems , 1987, Autom..

[23]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[24]  Thomas Kailath,et al.  Fast recursive identification of state space models via exploitation of displacement structure , 1994, Autom..

[25]  Allen R. Stubberud,et al.  Digital Control System Design , 1988 .

[26]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[27]  H. Akaike,et al.  Comment on "An innovations approach to least-squares estimation, part I: Linear filtering in additive white noise" , 1970 .

[28]  Youdan Kim,et al.  Introduction to Dynamics and Control of Flexible Structures , 1993 .

[29]  Alle-Jan van der Veen,et al.  Notation and Properties of Non-Uniform Spaces , 1998 .

[30]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .