NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells

[1]  S. Imai,et al.  Faculty of 1000 evaluation for NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. , 2018 .

[2]  Mark S. Schmidt,et al.  Nicotinamide riboside is uniquely and orally bioavailable in mice and humans , 2016, Nature Communications.

[3]  R. Aebersold,et al.  NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice , 2016, Science.

[4]  J. Reid,et al.  CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. , 2016, Cell metabolism.

[5]  R. Kardon,et al.  Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice , 2016, Scientific Reports.

[6]  Liping Yu,et al.  Nicotinamide Riboside Is a Major NAD+ Precursor Vitamin in Cow Milk. , 2016, The Journal of nutrition.

[7]  L. Sturla,et al.  Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model , 2015, Oncotarget.

[8]  H. Echlin,et al.  Characterization of NAD salvage pathways and their role in virulence in Streptococcus pneumoniae. , 2015, Microbiology.

[9]  A. Nikiforov,et al.  Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells* , 2015, The Journal of Biological Chemistry.

[10]  J. Auwerx,et al.  Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice , 2015, Hepatology.

[11]  J. Auwerx,et al.  NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. , 2015, Cell metabolism.

[12]  Á. Valverde,et al.  SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function , 2014, Molecular metabolism.

[13]  S. Jaffrey,et al.  Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss. , 2014, Cell metabolism.

[14]  Robert W Sobol,et al.  ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. , 2014, Cell reports.

[15]  J. Hennig,et al.  Continuous re-hyperpolarization of nuclear spins using parahydrogen: theory and experiment. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  L. Guarente,et al.  NAD+ and sirtuins in aging and disease. , 2014, Trends in cell biology.

[17]  J. Sadoshima,et al.  Nicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion , 2014, PloS one.

[18]  J. Larrick,et al.  Partial reversal of skeletal muscle aging by restoration of normal NAD⁺ levels. , 2014, Rejuvenation research.

[19]  J. Hennig,et al.  Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging , 2014, Analytical chemistry.

[20]  E. Mercken,et al.  Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging , 2013, Cell.

[21]  L. Sturla,et al.  CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells* , 2013, The Journal of Biological Chemistry.

[22]  L. Guarente,et al.  The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling , 2013, Cell.

[23]  Yu Cao,et al.  Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats , 2013, British Journal of Nutrition.

[24]  C. Brenner,et al.  Targeted, LCMS-based Metabolomics for Quantitative Measurement of NAD+ Metabolites , 2013, Computational and structural biotechnology journal.

[25]  J. Auwerx,et al.  The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. , 2012, Cell metabolism.

[26]  Johan Auwerx,et al.  Sirtuins as regulators of metabolism and healthspan , 2012, Nature Reviews Molecular Cell Biology.

[27]  S. Imai,et al.  Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. , 2011, Cell metabolism.

[28]  H. Osago,et al.  Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma , 2011, PloS one.

[29]  A. Nikiforov,et al.  Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells , 2011, The Journal of Biological Chemistry.

[30]  J. Auwerx,et al.  The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. , 2010, Endocrine reviews.

[31]  D. Sinclair,et al.  Mammalian sirtuins: biological insights and disease relevance. , 2010, Annual review of pathology.

[32]  M. Kato,et al.  Assimilation of Endogenous Nicotinamide Riboside Is Essential for Calorie Restriction-mediated Life Span Extension in Saccharomyces cerevisiae* , 2009, The Journal of Biological Chemistry.

[33]  P. Dhawan,et al.  Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism. VOLUME 284 (2009) PAGES 158-164 , 2009 .

[34]  C. Brenner,et al.  Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals , 2009, Journal of Biological Chemistry.

[35]  C. Brenner,et al.  Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. , 2008, Annual review of nutrition.

[36]  C. Brenner,et al.  Saccharomyces cerevisiae YOR071C Encodes the High Affinity Nicotinamide Riboside Transporter Nrt1* , 2008, Journal of Biological Chemistry.

[37]  A. Sauve,et al.  Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells. , 2007, Journal of medicinal chemistry.

[38]  J. Milbrandt,et al.  Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. , 2007, Cell metabolism.

[39]  Charles Brenner,et al.  Nicotinamide Riboside Kinase Structures Reveal New Pathways to NAD+ , 2007, PLoS biology.

[40]  C. Brenner,et al.  Nicotinamide Riboside Promotes Sir2 Silencing and Extends Lifespan via Nrk and Urh1/Pnp1/Meu1 Pathways to NAD+ , 2007, Cell.

[41]  J. Milbrandt,et al.  Stimulation of Nicotinamide Adenine Dinucleotide Biosynthetic Pathways Delays Axonal Degeneration after Axotomy , 2006, The Journal of Neuroscience.

[42]  C. Brenner,et al.  Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans , 2004, Cell.

[43]  D. Sinclair,et al.  Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae , 2003, Nature.

[44]  S. Dowell,et al.  Molecular Identification of High and Low Affinity Receptors for Nicotinic Acid* , 2003, The Journal of Biological Chemistry.

[45]  R. Volante,et al.  A chemical synthesis of nicotinamide adenine dinucleotide (NAD , 1999 .

[46]  M. Cynamon,et al.  Utilization and metabolism of NAD by Haemophilus parainfluenzae. , 1988, Journal of general microbiology.

[47]  D. Friend,et al.  HIGH-YIELD PREPARATION OF ISOLATED RAT LIVER PARENCHYMAL CELLS , 1969, Journal of Cell Biology.

[48]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[49]  C. Brenner,et al.  NAD+ metabolism in health and disease. , 2007, Trends in biochemical sciences.

[50]  D. Friend,et al.  TTTTTTTTT ISOLATED RAT LIVER PARENCHYMAL CELLS A Biochemical and Fine Structural Study , 2003 .