Cyanide-isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal = Cu, Ag, Au).

The internal isomerization, MNC ↔ MCN (M = Cu, Ag, Au), is investigated through quantum chemical computations. CuNC and AgNC are shown to be neither thermochemically nor kinetically stable against transformation to MCN. The free energy barrier (ΔG‡) for AuNC is somewhat considerable (7.1 kcal mol-1), indicating its viability, particularly at low temperature. Further, the Ng inserted analogues, MNgCN (M = Cu, Ag, Au; Ng = Xe, Rn) turn out to be thermochemically stable with respect to all possible dissociation channels but for two two-body dissociation channels, viz., MNgCN → Ng + MCN and MNgCN → Ng + MNC, which are connected to the internal isomerization processes, MNgCN → NgMCN and MNgCN → NgMNC, respectively. However, they are kinetically protected by substantial ΔG‡ values (11.8-15.4 kcal mol-1 for Cu, 9.8-13.6 kcal mol-1 for Ag, and 19.7-24.7 kcal mol-1 for Au). The pathways for such internal conversion are explored in detail. A thorough inspection of the bonding situation of the studied molecules, employing natural bond order, electron density, adaptive natural density partitioning, and energy decomposition analyses indicates that the M-Ng bonds in MNgCN and Ng-C bonds in AuNgCN can be represented as an electron-shared covalent bond. For the other Ng-C bonds, although an ionic description is better suited, the degree of covalent character is also substantial therein.

[1]  W. Grochala,et al.  Xenon as a Mediator of Chemical Reactions? Case of Elusive Gold Monofluoride, AuF, and its Adduct with Xenon, XeAuF , 2008 .

[2]  S. Ryazantsev,et al.  Photolabile xenon hydrides: a case study of HXeSH and HXeH. , 2013, The Journal of chemical physics.

[3]  Clark R. Landis,et al.  NBO 6.0: Natural bond orbital analysis program , 2013, J. Comput. Chem..

[4]  Pratim K. Chattaraj,et al.  Attractive Xe-Li interaction in Li-decorated clusters , 2013 .

[5]  Davide M. Proserpio,et al.  Experimental Electron Density in a Transition Metal Dimer: Metal−Metal and Metal−Ligand Bonds , 1998 .

[6]  Pratim K Chattaraj,et al.  Metastable behavior of noble gas inserted tin and lead fluorides. , 2015, Physical chemistry chemical physics : PCCP.

[7]  Lorenza Operti,et al.  Xenon-nitrogen chemistry: gas-phase generation and theoretical investigation of the xenon-difluoronitrenium ion F2N-Xe+. , 2011, Chemistry.

[8]  A Shayeghi,et al.  Charge-induced dipole vs. relativistically enhanced covalent interactions in Ar-tagged Au-Ag tetramers and pentamers. , 2015, The Journal of chemical physics.

[9]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[10]  Jan Lundell,et al.  Organo-noble-gas hydride compounds HKrCCH, HXeCCH, HXeCC, and HXeCCXeH: formation mechanisms and effect of 13C isotope substitution on the vibrational properties. , 2004, The Journal of chemical physics.

[11]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[12]  E. Baerends,et al.  Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .

[13]  Jerzy Cioslowski,et al.  Universality among topological properties of electron density associated with the hydrogen–hydrogen nonbonding interactions , 1992 .

[14]  S. Seidel,et al.  Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe4 , 2000 .

[15]  J. Murdoch What is the rate-limiting step of a multistep reaction? , 1981 .

[16]  Emi Y. Okabayashi,et al.  Detection of free monomeric silver(I) and gold(I) cyanides, AgCN and AuCN: microwave spectra and molecular structure. , 2009, Journal of the American Chemical Society.

[17]  Hélène P A Mercier,et al.  Ennobling an old molecule: thiazyl trifluoride (N≡SF3), a versatile synthon for Xe-N bond formation. , 2011, Inorganic chemistry.

[18]  Jonathan Tennyson,et al.  Ab initio global potential, dipole, adiabatic, and relativistic correction surfaces for the HCN-HNC system , 2001 .

[19]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[20]  Jun Li,et al.  Noble Gas-Actinide Compounds: Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices , 2002, Science.

[21]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[22]  G. Frenking,et al.  Divalent carbon(0) chemistry, part 1: Parent compounds. , 2008, Chemistry.

[23]  Pratim K Chattaraj,et al.  In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. , 2014, The journal of physical chemistry. A.

[24]  M. Gerry,et al.  Microwave spectra and structures of KrAuF, KrAgF, and KrAgBr; 83Kr nuclear quadrupole coupling and the nature of noble gas-noble metal halide bonding. , 2004, Journal of the American Chemical Society.

[25]  Donald G. Truhlar,et al.  Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions , 2004 .

[26]  P. Pyykkoe Predicted Chemical Bonds between Rare Gases and Au , 1995 .

[27]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[28]  Christopher E. Dateo,et al.  A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment , 1992 .

[29]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[30]  Wojciech Grochala,et al.  A metastable He-O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. , 2012, Physical chemistry chemical physics : PCCP.

[31]  P. K. Pearson,et al.  Potential energy surface for the model unimolecular reaction HNC → HCN , 1975 .

[32]  Ranajit Saha,et al.  A noble interaction: An assessment of noble gas binding ability of metal oxides (metal = Cu, Ag, Au) , 2016 .

[33]  R. Johnston,et al.  The Nature of Bonding between Argon and Mixed Gold-Silver Trimers. , 2015, Angewandte Chemie.

[34]  Jan Lundell,et al.  Insertion of noble gas atoms into cyanoacetylene: an ab initio and matrix isolation study. , 2006, The journal of physical chemistry. A.

[35]  Jan Lundell,et al.  Matrix-isolation and ab initio study of HNgCCF and HCCNgF molecules (Ng = Ar, Kr, and Xe). , 2010, The journal of physical chemistry. A.

[36]  Jan Lundell,et al.  A gate to organokrypton chemistry: HKrCCH. , 2003, Journal of the American Chemical Society.

[37]  David S Brock,et al.  [H(OXeF2)n][AsF6] and [FXe(II)(OXe(IV)F2)n][AsF6] (n = 1, 2): examples of xenon(IV) hydroxide fluoride and oxide fluoride cations and the crystal structures of [F3Xe---FH][Sb2F11] and [H5F4][SbF6]·2[F3Xe---FH][Sb2F11]. , 2013, Journal of the American Chemical Society.

[38]  Vladimir I Feldman,et al.  Direct visualization of the H-Xe bond in xenon hydrides: xenon isotopic shift in the IR spectra. , 2009, The Journal of chemical physics.

[39]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[40]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[41]  Pingxia Zhang,et al.  Bonding analysis for NgAuOH (Ng = Kr, Xe) , 2008 .

[42]  Ranajit Saha,et al.  Comparative Study on the Noble-Gas Binding Ability of BeX Clusters (X = SO4, CO3, O). , 2015, The journal of physical chemistry. A.

[43]  A. S. Dickinson,et al.  Accuracy of recent potential energy surfaces for the He-N2 interaction. I. Virial and bulk transport coefficients. , 2007, The Journal of chemical physics.

[44]  A. Buckingham,et al.  COVALENCY IN ARAU+ AND RELATED SPECIES? , 1997 .

[45]  Richard Dronskowski,et al.  A stable compound of helium and sodium at high pressure. , 2013, Nature chemistry.

[46]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[47]  Gernot Frenking,et al.  Energy decomposition analysis , 2020, Catalysis from A to Z.

[48]  Ranajit Saha,et al.  σ-Aromatic cyclic M3(+) (M = Cu, Ag, Au) clusters and their complexation with dimethyl imidazol-2-ylidene, pyridine, isoxazole, furan, noble gases and carbon monoxide. , 2016, Physical chemistry chemical physics : PCCP.

[49]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[50]  Jan Lundell,et al.  Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. , 2003, Journal of the American Chemical Society.

[51]  Philip Coppens,et al.  Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4- ion and comparison with time-resolved X-ray and spectroscopic results. , 2003, Journal of the American Chemical Society.

[52]  Lorenza Operti,et al.  F3Ge-Xe+: a Xenon-Germanium Molecular Species , 2010 .

[53]  M. Gerry,et al.  Rotational spectra, structures, hyperfine constants, and the nature of the bonding of KrCuF and KrCuCl. , 2004, Inorganic chemistry.

[54]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[55]  Mariusz Klobukowski,et al.  Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions , 1993 .

[56]  Vladimir I Feldman,et al.  Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. , 2003, Journal of the American Chemical Society.

[57]  Gernot Frenking,et al.  Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO₃ and a comparison with NgBeO (Ng = He, Ne, Ar, Kr, Xe). , 2015, The journal of physical chemistry. A.

[58]  M. Räsänen,et al.  HXeOBr in a xenon matrix. , 2011, The Journal of chemical physics.

[59]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[60]  Markku Räsänen,et al.  Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. , 2012, Inorganic chemistry.

[61]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[62]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[63]  Lucy M Ziurys,et al.  The first precise molecular structure of a monomeric transition metal cyanide, copper(I) cyanide. , 2002, Journal of the American Chemical Society.

[64]  Markku Räsänen,et al.  Noble-gas hydrides: new chemistry at low temperatures. , 2009, Accounts of chemical research.

[65]  Christopher E. Dateo,et al.  Accurate Quartic Force Fields and Vibrational Frequencies for HCN and HNC , 1993 .

[66]  Gernot Frenking,et al.  Neutral noble gas compounds exhibiting a Xe-Xe bond: structure, stability and bonding situation. , 2012, Physical chemistry chemical physics : PCCP.

[67]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[68]  Jun Li,et al.  Significant interactions between uranium and noble-gas atoms: coordination of the UO2+ cation by Ne, Ar, Kr, and Xe atoms. , 2004, Angewandte Chemie.

[69]  Alistair P. Rendell,et al.  The structure and energetics of the HCN → HNC transition state , 1991 .

[70]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[71]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[72]  Jun Li,et al.  Noble gas-actinide compounds: evidence for the formation of distinct CUO(Ar)(4-n)(Xe)(n) and CUO(Ar)(4-n)(Kr)(n) (n = 1, 2, 3, 4) complexes. , 2002, Journal of the American Chemical Society.

[73]  Debashree Manna,et al.  Theoretical prediction of noble gas inserted thioformyl cations: HNgCS⁺ (Ng = He, Ne, Ar, Kr, and Xe). , 2015, The journal of physical chemistry. A.

[74]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[75]  Wojciech Grochala,et al.  Noble gas monoxides stabilized in a dipolar cavity: a theoretical study. , 2015, The journal of physical chemistry. A.

[76]  A. DePrince,et al.  Molecular geometries and harmonic frequencies from the parametric two-electron reduced density matrix method with application to the HCN < = > HNC isomerization. , 2008, The journal of physical chemistry. B.

[77]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[78]  Stefano Borocci,et al.  Complexes of XeHXe⁺ with simple ligands: a theoretical investigation on (XeHXe⁺)L (L = N₂, CO, H₂O, NH₃). , 2015, The journal of physical chemistry. A.

[79]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[80]  P. Popelier The QTAIM Perspective of Chemical Bonding , 2014 .

[81]  Jan Lundell,et al.  Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. , 2003, Journal of the American Chemical Society.

[82]  M. Gerry,et al.  XeCu covalent bonding in XeCuF and XeCuCl, characterized by fourier transform microwave spectroscopy supported by quantum chemical calculations. , 2006, Journal of the American Chemical Society.

[83]  Pratim K Chattaraj,et al.  Ab initio study on the stability of Ng(n)Be₂N₂, Ng(n)Be₃N₂ and NgBeSiN₂ clusters. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[84]  Pratim K. Chattaraj,et al.  Exploring the Nature of Silicon-Noble Gas Bonds in H3SiNgNSi and HSiNgNSi Compounds (Ng = Xe, Rn) , 2015, International journal of molecular sciences.

[85]  Sreyan Ghosh,et al.  Structure and stability of noble gas bound EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br) , 2016, J. Comput. Chem..

[86]  T. Ghanty How strong is the interaction between a noble gas atom and a noble metal atom in the insertion compounds MNgF (M=Cu and Ag, and Ng=Ar, Kr, and Xe)? , 2006, The Journal of chemical physics.

[87]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[88]  M. Räsänen,et al.  Matrix-isolation and ab initio study of HKrCCCl and HXeCCCl. , 2015, The Journal of chemical physics.

[89]  Adrian M. Gardner,et al.  Geometries and bond energies of the He-MX, Ne-MX, and Ar-MX (M = Cu, Ag, Au; X = F, Cl) complexes. , 2010, The journal of physical chemistry. A.

[90]  Pekka Pyykkö,et al.  Cationic Gold(I) Complexes of Xenon and of Ligands Containing the Donor Atoms Oxygen, Nitrogen, Phosphorus, and Sulfur † , 1998 .

[91]  G. Frenking,et al.  Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes☆ , 2003 .

[92]  L. T. Redmon,et al.  Correlation effects in the isomeric cyanides: HNC↔HCN, LiNC↔gLiCN, and BNC↔gBCN , 1980 .

[93]  Keiji Morokuma,et al.  Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity , 1977 .

[94]  Lucas Visscher,et al.  The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. , 2008, Journal of the American Chemical Society.

[95]  W. Jäger,et al.  Investigation of the Ne-NH3 van der Waals complex: Rotational spectrum and ab initio calculations , 2001 .

[96]  Evert Jan Baerends,et al.  Relativistic regular two-component Hamiltonians. , 1996 .

[97]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[98]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[99]  T. Ghanty,et al.  Unprecedented Enhancement of Noble Gas-Noble Metal Bonding in NgAu3+ (Ng = Ar, Kr, and Xe) Ion through Hydrogen Doping. , 2016, The journal of physical chemistry. A.

[100]  Hélène P A Mercier,et al.  Noble-gas difluoride complexes of mercury(II): the syntheses and structures of Hg(OTeF5)2·1.5NgF2 (Ng = Xe, Kr) and Hg(OTeF5)2. , 2014, Journal of the American Chemical Society.

[101]  W. Hehre,et al.  Heat of formation of hydrogen isocyanide by ion cyclotron double resonance spectroscopy , 1982 .

[102]  Ashutosh Gupta,et al.  A coupled‐cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au) , 2015, J. Comput. Chem..

[103]  Hanno Essén,et al.  The characterization of atomic interactions , 1984 .

[104]  M. G. Evans,et al.  Some applications of the transition state method to the calculation of reaction velocities, especially in solution , 1935 .

[105]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[106]  Gernot Frenking,et al.  Donor acceptor complexes of noble gases. , 2009, Journal of the American Chemical Society.

[107]  Jan Lundell,et al.  A neutral xenon-containing radical, HXeO. , 2003, Journal of the American Chemical Society.

[108]  P. Chattaraj,et al.  MNgCCH (M = Cu, Ag, Au; Ng = Xe, Rn): The First Set of Compounds with M-Ng-C Bonding Motif. , 2017, The journal of physical chemistry. A.

[109]  Tapan K. Ghanty,et al.  Theoretical prediction of rare gas containing hydride cations: HRgBF+ (Rg = He, Ar, Kr, and Xe). , 2013, The journal of physical chemistry. A.

[110]  Roald Hoffmann,et al.  Freezing in resonance structures for better packing: XeF2 becomes (XeF+)(F-) at large compression. , 2011, Inorganic chemistry.

[111]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[112]  M. Heaven,et al.  Spectroscopic characterization of the C2-Ne van der Waals complex. , 2006, The Journal of chemical physics.

[113]  Michael C. L. Gerry,et al.  Noble Gas−Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar−AuCl and Kr−AuCl , 2000 .

[114]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[115]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[116]  T. Ghanty Insertion of noble-gas atom (Kr and Xe) into noble-metal molecules (AuF and AuOH): are they stable? , 2005, The Journal of chemical physics.

[117]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[118]  Michael C. L. Gerry,et al.  Insights into the xenon–silver halide interaction from a rotational spectroscopic study of XeAgF and XeAgCl , 2004 .

[119]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[120]  R. Benny Gerber,et al.  Lifetimes of compounds made of noble-gas atoms with water , 2009 .

[121]  Ranajit Saha,et al.  Noble Gas Binding Ability of Metal‐Bipyridine Monocationic Complexes (Metal=Cu, Ag, Au): A Computational Study , 2016 .

[122]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[123]  Pingxia Zhang,et al.  Bonding analysis for NgMOH (Ng=Ar, Kr and Xe; M=Cu and Ag) , 2008 .

[124]  Piero Macchi,et al.  Charge Density in Transition Metal Clusters: Supported vs Unsupported Metal−Metal Interactions , 1999 .