Quantum computing for financial risk measurement

[1]  K. Mitarai,et al.  Pricing Multiasset Derivatives by Variational Quantum Algorithms , 2022, IEEE Transactions on Quantum Engineering.

[2]  P. Rebentrost,et al.  Quantum computational finance: martingale asset pricing for incomplete markets , 2022, 2209.08867.

[3]  P. Rebentrost,et al.  A quantum online portfolio optimization algorithm , 2022, Quantum Inf. Process..

[4]  K. Dasgupta,et al.  Loading Probability Distributions in a Quantum circuit , 2022, 2208.13372.

[5]  Xian-min Jin,et al.  Quantum Computation for Pricing Caps using the LIBOR Market Model , 2022, 2207.01558.

[6]  A. Giani,et al.  Copula-based Risk Aggregation with Trapped Ion Quantum Computers , 2022, 2206.11937.

[7]  F. D. Albareti,et al.  A Structured Survey of Quantum Computing for the Financial Industry , 2022, 2204.10026.

[8]  A. Lvovsky,et al.  Quantum computing at the quantum advantage threshold: a down-to-business review , 2022, 2203.17181.

[9]  Martin Vesel'y Application of Quantum Computers in Foreign Exchange Reserves Management , 2022, 2203.15716.

[10]  Maria R. Nogueiras,et al.  A Survey on Quantum Computational Finance for Derivatives Pricing and VaR , 2022, Archives of Computational Methods in Engineering.

[11]  P. Rebentrost,et al.  Quantum advantage for multi-option portfolio pricing and valuation adjustments , 2022, 2203.04924.

[12]  M. Kastoryano,et al.  A highly efficient tensor network algorithm for multi-asset Fourier options pricing , 2022, 2203.02804.

[13]  Koichi Miyamoto Quantum algorithm for calculating risk contributions in a credit portfolio , 2022, EPJ Quantum Technology.

[14]  Marco Pistoia,et al.  A Survey of Quantum Computing for Finance , 2022, 2201.02773.

[15]  W. Zeng,et al.  Towards Quantum Advantage in Financial Market Risk using Quantum Gradient Algorithms , 2021, Quantum.

[16]  Koichi Miyamoto,et al.  Pricing Multi-Asset Derivatives by Finite-Difference Method on a Quantum Computer , 2021, IEEE Transactions on Quantum Engineering.

[17]  Koichi Miyamoto Bermudan option pricing by quantum amplitude estimation and Chebyshev interpolation , 2021, EPJ Quantum Technology.

[18]  Yudong Cao,et al.  Quantum algorithm for credit valuation adjustments , 2021, New Journal of Physics.

[19]  Steven Herbert Quantum Monte Carlo Integration: The Full Advantage in Minimal Circuit Depth , 2021, Quantum.

[20]  Yuchun Wu,et al.  Quantum computational quantitative trading: high-frequency statistical arbitrage algorithm , 2021, New Journal of Physics.

[21]  A. Prakash,et al.  Low depth algorithms for quantum amplitude estimation , 2020, Quantum.

[22]  Yuchun Wu,et al.  Quantum Encoding and Analysis on Continuous Stochastic Process , 2022 .

[23]  Blake R. Johnson,et al.  Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum computers , 2021, 2110.14108.

[24]  J. V. Van Huele,et al.  Understanding and compensating for noise on IBM quantum computers , 2021, American Journal of Physics.

[25]  T. Sakuma Quantum Circuit Learning to Compute Option Prices and Their Sensitivities , 2021, SSRN Electronic Journal.

[26]  Marco Pistoia,et al.  Quantum Machine Learning for Finance , 2021, ArXiv.

[27]  A. Kondratyev Non‐Differentiable Leaning of Quantum Circuit Born Machine with Genetic Algorithm , 2021, Wilmott.

[28]  T. Decker,et al.  A Quantum Algorithm for the Sensitivity Analysis of Business Risks , 2021, 2103.05475.

[29]  H. Neven,et al.  Exponential suppression of bit or phase errors with cyclic error correction , 2021, Nature.

[30]  Santosh Kumar Radha Quantum option pricing using Wick rotated imaginary time evolution , 2021, 2101.04280.

[31]  C. Emary,et al.  Modeling and simulating the noisy behavior of near-term quantum computers , 2021, Physical Review A.

[32]  Ashley Montanaro,et al.  Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance , 2020, Quantum.

[33]  W. Zeng,et al.  A Threshold for Quantum Advantage in Derivative Pricing , 2020, Quantum.

[34]  K. Kaneko,et al.  Quantum speedup of Monte Carlo integration with respect to the number of dimensions and its application to finance , 2020, Quantum Information Processing.

[35]  N. Killoran,et al.  Estimating the gradient and higher-order derivatives on quantum hardware , 2020, 2008.06517.

[36]  Francesco Petruccione,et al.  Quantum-enhanced analysis of discrete stochastic processes , 2020, npj Quantum Information.

[37]  Xian-min Jin,et al.  Quantum computation for pricing the collateralized debt obligations , 2020, Quantum Eng..

[38]  Elham Kashefi,et al.  Quantum versus classical generative modelling in finance , 2020, Quantum Science and Technology.

[39]  Stefan Woerner,et al.  Variational quantum Boltzmann machines , 2020, Quantum Machine Intelligence.

[40]  Stefan Woerner,et al.  Credit Risk Analysis Using Quantum Computers , 2019, IEEE Transactions on Computers.

[41]  Enrique Solano,et al.  Towards Pricing Financial Derivatives with an IBM Quantum Computer. , 2019, 1904.05803.

[42]  Miklos Santha,et al.  Quantum algorithm for stochastic optimal stopping problems , 2021 .

[43]  Jack D. Hidary,et al.  Quantum Computing: An Applied Approach , 2021 .

[44]  E. Solano,et al.  Pricing financial derivatives with exponential quantum speedup , 2021 .

[45]  Takayuki Sakuma,et al.  Application of deep quantum neural networks to finance , 2020, 2011.07319.

[46]  H. Neven,et al.  Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage , 2020, 2011.04149.

[47]  Neil I. Gillespie,et al.  Practical Quantum Computing: The value of local computation. , 2020, 2009.08513.

[48]  Dasol Jin,et al.  Quantum amplitude estimation algorithms on IBM quantum devices , 2020, Optical Engineering + Applications.

[49]  Jakub Marecek,et al.  Quantum Computing for Finance: State-of-the-Art and Future Prospects , 2020, IEEE Transactions on Quantum Engineering.

[50]  Stefan Woerner,et al.  Efficient State Preparation for Quantum Amplitude Estimation , 2020, 2005.07711.

[51]  J. Gregory The xVA Challenge , 2020 .

[52]  J. Gregory The xVA Challenge: Counterparty Risk, Funding, Collateral, Capital and Initial Margin , 2020 .

[53]  Kouhei Nakaji Faster amplitude estimation , 2020, Quantum Inf. Comput..

[54]  Janusz Milek,et al.  Quantum Implementation of Risk Analysis-relevant Copulas , 2020, 2002.07389.

[55]  A. Perdomo-Ortiz,et al.  Classical versus quantum models in machine learning: insights from a finance application , 2019, Mach. Learn. Sci. Technol..

[56]  Giacomo Nannicini,et al.  Improving Variational Quantum Optimization using CVaR , 2019, Quantum.

[57]  Yue Sun,et al.  Option Pricing using Quantum Computers , 2019, Quantum.

[58]  Naoki Yamamoto,et al.  Amplitude estimation without phase estimation , 2019, Quantum Information Processing.

[59]  Stefan Woerner,et al.  Iterative quantum amplitude estimation , 2019, 1912.05559.

[60]  F. Fontanela,et al.  A Quantum Algorithm for Linear PDEs Arising in Finance , 2019, SSRN Electronic Journal.

[61]  Diego Garc'ia-Mart'in,et al.  Quantum unary approach to option pricing , 2019, Physical Review A.

[62]  Koichi Miyamoto,et al.  Reduction of qubits in a quantum algorithm for Monte Carlo simulation by a pseudo-random-number generator , 2019, 1911.12469.

[63]  S. Dulman,et al.  Portfolio rebalancing experiments using the Quantum Alternating Operator Ansatz , 2019, 1911.05296.

[64]  S. Dasgupta,et al.  Quantum Annealing Algorithm for Expected Shortfall based Dynamic Asset Allocation , 2019, 1909.12904.

[65]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[66]  Christian Schwarz,et al.  The Market Generator , 2019, SSRN Electronic Journal.

[67]  Stefan Woerner,et al.  Quantum Generative Adversarial Networks for learning and loading random distributions , 2019, npj Quantum Information.

[68]  R. Orús,et al.  Forecasting financial crashes with quantum computing , 2018, Physical Review A.

[69]  Roman Orus,et al.  Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.

[70]  Stefan Woerner,et al.  Quantum risk analysis , 2018, npj Quantum Information.

[71]  Petar Nikolov,et al.  Markov process simulation on a real quantum computer , 2018, PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’19).

[72]  Thomas R. Bromley,et al.  Quantum computational finance: Monte Carlo pricing of financial derivatives , 2018, Physical Review A.

[73]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[74]  Max Rounds,et al.  Optimal feature selection in credit scoring and classification using a quantum annealer , 2017 .

[75]  M. Haugh,et al.  An Introduction to Copulas , 2016 .

[76]  I. Markov,et al.  Synthesis of quantum-logic circuits , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[77]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[78]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[79]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[80]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[81]  Bruno Dupire Pricing with a Smile , 1994 .

[82]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[83]  R. Mazo On the theory of brownian motion , 1973 .