A branch-reduce-cut algorithm for the global optimization of probabilistically constrained linear programs

We consider probabilistically constrained linear programs with general distributions for the uncertain parameters. These problems involve non-convex feasible sets. We develop a branch-and-bound algorithm that searches for a global optimal solution to this problem by successively partitioning the non-convex feasible region and by using bounds on the objective function to fathom inferior partition elements. This basic algorithm is enhanced by domain reduction and cutting plane strategies to reduce the size of the partition elements and hence tighten bounds. The proposed branch-reduce-cut algorithm exploits the monotonicity properties inherent in the problem, and requires solving linear programming subproblems. We provide convergence proofs for the algorithm. Some illustrative numerical results involving problems with discrete distributions are presented.

[1]  Hoang Tuy,et al.  Monotonic Optimization: Problems and Solution Approaches , 2000, SIAM J. Optim..

[2]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[3]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[4]  G. Pflug,et al.  Value-at-Risk in Portfolio Optimization: Properties and Computational Approach ⁄ , 2005 .

[5]  Andrzej Ruszczynski,et al.  Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra , 2002, Math. Program..

[6]  Suvrajeet Sen Relaxations for probabilistically constrained programs with discrete random variables , 1992, Oper. Res. Lett..

[7]  Kar-Ann Toh Global Optimization by Monotonic Transformation , 2002, Comput. Optim. Appl..

[8]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[9]  Darinka Dentcheva,et al.  On convex probabilistic programming with discrete distributions , 2001 .

[10]  András Prékopa,et al.  Contributions to the theory of stochastic programming , 1973, Math. Program..

[11]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[12]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[13]  Darinka Dentcheva,et al.  Concavity and efficient points of discrete distributions in probabilistic programming , 2000, Math. Program..

[14]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[15]  Duan Li,et al.  Convexification, Concavification and Monotonization in Global Optimization , 2001, Ann. Oper. Res..

[16]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[17]  Patrizia Beraldi,et al.  A branch and bound method for stochastic integer problems under probabilistic constraints , 2002, Optim. Methods Softw..

[18]  Stuart Bermon,et al.  Capacity Optimization Planning System (CAPS) , 1999, Interfaces.

[19]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[20]  András Prékopa Static Stochastic Programming Models , 1995 .

[21]  Julia L. Higle,et al.  An Introductory Tutorial on Stochastic Linear Programming Models , 1999, Interfaces.

[22]  Shabbir Ahmed Global Optimization of Probabilistically Constrained Linear Programs , 2006, CP.

[23]  Patrizia Beraldi,et al.  Designing robust emergency medical service via stochastic programming , 2004, Eur. J. Oper. Res..

[24]  András Prékopa Sharp Bounds on Probabilities Using Linear Programming , 1990, Oper. Res..

[25]  Patrizia Beraldi,et al.  The Probabilistic Set-Covering Problem , 2002, Oper. Res..