Sparse fast Clifford Fourier transform

The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are implemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.

[1]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[2]  W. Cao,et al.  Clifford Fuzzy Support Vector Machines for Classification , 2016 .

[3]  Eckhard Hitzer,et al.  Introduction to Clifford's Geometric Algebra , 2013, 1306.1660.

[4]  Piotr Indyk,et al.  Sparse Recovery Using Sparse Matrices , 2010, Proceedings of the IEEE.

[5]  Weixin Xie,et al.  Coverage analysis for sensor networks based on Clifford algebra , 2008, Science in China Series F: Information Sciences.

[6]  Frédo Durand,et al.  Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain , 2014, ACM Trans. Graph..

[7]  E. Hitzer The Clifford Fourier Transform in Real Clifford Algebras , 2013 .

[8]  Markus Püschel,et al.  High-performance sparse fast Fourier transforms , 2014, 2014 IEEE Workshop on Signal Processing Systems (SiPS).

[9]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[10]  Eckhard Hitzer,et al.  Square Roots of –1 in Real Clifford Algebras , 2012, 1204.4576.

[11]  Omid Salehi-Abari,et al.  GHz-wide sensing and decoding using the sparse Fourier transform , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[12]  Gerik Scheuermann,et al.  Clifford convolution and pattern matching on vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[13]  Piotr Indyk,et al.  Faster GPS via the sparse fourier transform , 2012, Mobicom '12.

[14]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[15]  Gerik Scheuermann,et al.  Clifford Fourier transform on vector fields , 2005, IEEE Transactions on Visualization and Computer Graphics.

[16]  Stephen J. Sangwine,et al.  Quaternion and Clifford Fourier Transforms and Wavelets , 2013 .

[17]  Ely Porat,et al.  Sublinear time, measurement-optimal, sparse recovery for all , 2012, SODA.

[18]  Piotr Indyk,et al.  Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.

[19]  Thomas Batard,et al.  Clifford-Fourier Transform for Color Image Processing , 2010, Geometric Algebra Computing.

[20]  Reuben Wilcock,et al.  A Geometric Algebra Co-Processor for Color Edge Detection , 2015 .

[21]  Gerik Scheuermann,et al.  Analyzing Real Vector Fields with Clifford Convolution and Clifford-Fourier Transform , 2010, Geometric Algebra Computing.

[22]  R. Bujack,et al.  Demystification of the geometric Fourier transforms and resulting convolution theorems , 2016 .

[23]  David Hestenes New Foundations for Classical Mechanics , 1986 .

[24]  Hans Hagen,et al.  Fast Clifford Fourier transfor- mation for unstructured vector field data. , 2005 .

[25]  Chen Xu,et al.  3D medical image registration based on conformal geometric algebra , 2013 .

[26]  Jie Liu,et al.  Fast approximate correlation for massive time-series data , 2010, SIGMOD Conference.

[27]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[28]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[29]  Eckhard Hitzer,et al.  Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for Dimensions n = 2 (mod 4) and n = 3 (mod 4) , 2008 .

[30]  Stephen J. Sangwine,et al.  Colour-sensitive edge detection using hypercomplex filters , 2000, 2000 10th European Signal Processing Conference.