On the Fundamental Group of self-affine plane Tiles

Soient A ∈ Z 2 x Z 2 une matrice expansive, D c Z 2 un ensemble a |det(A)| elements et T l'ensemble defini par l'equation AT = T + D. Si T a une mesure de Lebesgue sur R 2 strictement superieure a zero, alors T est appele motif plan auto-affine. Cet article etablit certaines proprietes topologiques de T. Nous montrons que le groupe fondamental π 1 (T) de T est soit trivial, soit infini non denombrable, et nous donnons des criteres associes a chacun des deux cas. De plus, nous incluons une courte preuve de la propriete que l'adherence de chaque composante connexe de int(T) est un continuum localement connexe (nous demontrons meme ce resultat dans le cas plus general d'attracteurs plans d'IFS satisfaisant la condition de l'ensemble ouvert). Si π 1 (T) = 0, nous montrons meme que l'adherence de chaque composante de int(T) est homeomorphe au disque unite. Nous appliquons nos resultats a plusieurs examples de motifs etudies dans la litterature.

[1]  E. Moise Geometric Topology in Dimensions 2 and 3 , 1977 .

[2]  N. Ayırtman,et al.  Univalent Functions , 1965, Series and Products in the Development of Mathematics.

[3]  S. Lang Complex Analysis , 1977 .

[4]  Attractors for Invertible Expanding Linear Operators and Number Systems in Z 2 , 2000 .

[5]  Shigeki Akiyama,et al.  The topological structure of fractal tilings generated by quadratic number systems , 2005 .

[6]  Gregory R. Conner,et al.  On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane , 2005 .

[7]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[8]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[9]  Masayoshi Hata,et al.  On the structure of self-similar sets , 1985 .

[10]  Yang Wang,et al.  Disk-Like Self-Affine Tiles in R2 , 2001, Discrete & Computational Geometry.

[11]  S. Krantz Fractal geometry , 1989 .

[12]  Jun Luo,et al.  On the boundary connectedness of connected tiles , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Sze-Man Ngai,et al.  A TECHNIQUE IN THE TOPOLOGY OF CONNECTED SELF-SIMILAR TILES , 2004 .

[14]  R. Ho Algebraic Topology , 2022 .

[15]  I. Kátai,et al.  Number Systems and Fractal Geometry , 1992 .

[16]  Jörg M. Thuswaldner,et al.  Canonical number systems, counting automata and fractals , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Sze-Man Ngai,et al.  Vertices of self-similar tiles , 2005 .

[18]  Michael Baake,et al.  Digit tiling of euclidean space , 2000 .

[19]  Shigeki Akiyama,et al.  A Survey on Topological Properties of Tiles Related to Number Systems , 2004 .

[20]  Jörg M. Thuswaldner,et al.  Neighbours of Self-affine Tiles in Lattice Tilings , 2003 .

[21]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[22]  Yang WANGAbstract,et al.  GEOMETRY OF SELF � AFFINE TILES , 1998 .

[23]  Hui Rao,et al.  TOPOLOGICAL STRUCTURE OF SELF-SIMILAR SETS , 2002 .