MATHEMATICAL ENGINEERING TECHNICAL REPORTS Connecting Tables with Zero-One Entries by a Subset of a Markov Basis

We discuss connecting tables with zero-one entries by a subset of a Markov basis. In this paper, as a Markov basis we consider the Graver basis, which corresponds to the unique minimal Markov basis for the Lawrence lifting of the original configuration. Since the Graver basis tends to be large, it is of interest to clarify conditions such that a subset of the Graver basis, in particular a minimal Markov basis itself, connects tables with zero-one entries. We give some theoretical results on the connectivity of tables with zero-one entries. We also study some common models, where a minimal Markov basis for tables without the zero-one restriction does not connect tables with zero-one entries.

[1]  John M. Roberts Simple methods for simulating sociomatrices with given marginal totals , 2000, Soc. Networks.

[2]  Satoshi Aoki,et al.  Markov chain Monte Carlo exact tests for incomplete two-way contingency tables , 2005 .

[3]  Cees A. W. Glas,et al.  Testing the Rasch Model , 1995 .

[4]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[5]  A. Takemura,et al.  Some characterizations of minimal Markov basis for sampling from discrete conditional distributions , 2004 .

[6]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[7]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[8]  M. Rogantin,et al.  Algebraic and Geometric Methods in Statistics: Indicator function and sudoku designs , 2009 .

[9]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[10]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[11]  Rory A. Fisher,et al.  The 6 × 6 Latin squares , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  P. Matthews,et al.  Generating uniformly distributed random latin squares , 1996 .

[13]  Ruriko Yoshida,et al.  Markov bases and subbases for bounded contingency tables , 2009, 0905.4841.

[14]  Satoshi Aoki,et al.  Perturbation method for determining the group of invariance of hierarchical models , 2008, Adv. Appl. Math..

[15]  Akimichi Takemura,et al.  On connectivity of fibers with positive marginals in multiple logistic regression , 2010, J. Multivar. Anal..

[16]  Satoshi Aoki,et al.  Distance-reducing Markov bases for sampling from a discrete sample space , 2005 .

[17]  Yuguo Chen,et al.  Conditional Inference on Tables With Structural Zeros , 2007 .

[18]  A. Takemura,et al.  Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .

[19]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[20]  Satoshi Aoki,et al.  Minimal and minimal invariant Markov bases of decomposable models for contingency tables , 2010 .

[21]  Yung-Pin Chen,et al.  An Application of Markov Chain Monte Carlo to Community Ecology , 2003, Am. Math. Mon..

[22]  Ramazan Basturk,et al.  Applying the many‐facet Rasch model to evaluate PowerPoint presentation performance in higher education , 2008 .

[23]  H. Ryser Combinatorial Properties of Matrices of Zeros and Ones , 1957, Canadian Journal of Mathematics.

[24]  Weimo Zhu,et al.  Many-Faceted Rasch Modeling Expert Judgment in Test Development , 1998 .

[25]  J. Linacre,et al.  Many-facet Rasch measurement , 1994 .

[26]  Ivo Ponocny,et al.  Nonparametric goodness-of-fit tests for the rasch model , 2002 .

[27]  A. Rao,et al.  A Markov chain Monte carol method for generating random (0, 1)-matrices with given marginals , 1996 .

[28]  Dylan S. Small,et al.  Exact tests for the rasch model via sequential importance sampling , 2005 .