Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs.

We demonstrate that ultrasmall double-layer photonic-crystal-slab cavities exhibit a very high-Q value for a wide range of the layer spacing, which enables us to realize unique optomechanical coupling. By mechanically varying the separation, we can achieve extraordinarily large wavelength conversion. In addition, the light stored in the cavity can generate a large radiation force. We show that this system exhibits extremely high energy conversion efficiency between optical and mechanical energy, leading to a novel approach for the optomechanical control of light and matter.