CMOS inverter delay model based on DC transfer curve for slow input

This work presents a novel approach to estimate the CMOS inverter delay. The proposed delay model uses the DC transfer curve in order to predict the inverter behavior for slow input transitions rather than estimating the discharging time. Moreover, the only required empirical parameters are those used to calibrate the transistor model. Results are on very good agreement with HSPICE simulations based on BSIM4 transistor model, over a wide range of input slopes and output loads. Comparisons to previously works show that such new delay model offers improved modeling with good trade-off between simplicity and accuracy. The average error is near to 3%, and the worst case error is smaller than 10%.

[1]  Robert G. Meyer,et al.  An engineering model for short-channel MOS devices , 1988 .

[2]  D. Auvergne,et al.  A comprehensive delay macro modeling for submicrometer CMOS logics , 1999, IEEE J. Solid State Circuits.

[3]  Dejan Markovic,et al.  Delay Estimation and Sizing of CMOS Logic Using Logical Effort With Slope Correction , 2009 .

[4]  Sachin S. Sapatnekar,et al.  DAG based library-free technology mapping , 2007, GLSVLSI '07.

[5]  Spiridon Nikolaidis,et al.  Propagation delay and short-circuit power dissipation modeling of the CMOS inverter , 1998 .

[6]  Mark Zwolinski,et al.  Analytical transient response and propagation delay model for nanoscale CMOS inverter , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[7]  José Luis Rosselló,et al.  An analytical charge-based compact delay model for submicrometer CMOS inverters , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Kjell O. Jeppson,et al.  CMOS Circuit Speed and Buffer Optimization , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  D. Al-Khalili,et al.  Tree-based transistor topology extraction algorithm for library-free logic synthesis , 2004, 2004 IEEE International Conference on Semiconductor Electronics.

[10]  Atsushi Kurokawa,et al.  Modeling the Overshooting Effect for CMOS Inverter Delay Analysis in Nanometer Technologies , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Francis Balestra,et al.  On the drain current saturation in short channel MOSFETs , 2006, Microelectron. J..

[12]  W. C. Elmore The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers , 1948 .

[13]  A. R. Newton,et al.  Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas , 1990 .

[14]  S. Bampi,et al.  A timing analysis tool for VLSI CMOS synchronous circuits , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[15]  Asim J. Al-Khalili,et al.  Technology portable analytical model for DSM CMOS inverter delay estimation , 2005 .

[16]  Nicholas C. Rumin,et al.  Inverter models of CMOS gates for supply current and delay evaluation , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  Jaume Segura,et al.  A compact gate-level energy and delay model of dynamic CMOS gates , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  Maurizio Zamboni,et al.  A comprehensive submicrometer MOST delay model and its application to CMOS buffers , 1997 .

[19]  Kjell Jeppson,et al.  Modeling the influence of the transistor gain ratio and the input-to-output coupling capacitance on the CMOS inverter delay , 1994 .

[20]  Spiridon Nikolaidis,et al.  Analytical transient response and propagation delay evaluation of the CMOS inverter for short-channel devices , 1998, IEEE J. Solid State Circuits.

[21]  Takayasu Sakurai,et al.  Delay analysis of series-connected MOSFET circuits , 1991 .

[22]  Alexander Chatzigeorgiou,et al.  A modeling technique for CMOS gates , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  Anas A. Hamoui,et al.  An analytical model for current, delay, and power analysis of submicron CMOS logic circuits , 2000 .

[24]  Dhamin Al-Khalili,et al.  Cell stack length using an enhanced logical effort model for a library-free paradigm , 2011, 2011 18th IEEE International Conference on Electronics, Circuits, and Systems.

[25]  Y.-H. Jun,et al.  An accurate and efficient delay time modeling for MOS logic circuits using polynomial approximation , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[26]  Yu Cao,et al.  Predictive Technology Model for Nano-CMOS Design Exploration , 2006, 2006 1st International Conference on Nano-Networks and Workshops.

[27]  J. Meindl,et al.  A physical alpha-power law MOSFET model , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[28]  Sherif H. K. Embabi,et al.  Delay models for CMOS, BiCMOS and BiNMOS circuits and their applications for timing simulations , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[29]  D. Deschacht,et al.  Delay-time evaluation in ED MOS logic LSI , 1986 .

[30]  A. B. Bhattacharyya,et al.  Extended-Sakurai-Newton MOSFET Model for Ultra-Deep-Submicrometer CMOS Digital Design , 2009, 2009 22nd International Conference on VLSI Design.

[31]  J R Burns,et al.  SWITCHING RESPONSE OF COMPLEMENTARY SYMMETRY MOS TRANSISTOR LOGIC CIRCUITS , 1964 .

[32]  Jaume Segura,et al.  Charge-based analytical model for the evaluation of powerconsumption in submicron CMOS buffers , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[33]  Takayasu Sakurai,et al.  A simple MOSFET model for circuit analysis , 1991 .

[34]  D. Deschacht,et al.  Explicit formulation of delays in CMOS data paths , 1988 .

[35]  S. Dutta,et al.  A comprehensive delay model for CMOS inverters , 1995 .

[36]  Dejan Markovic,et al.  Delay Estimation and Sizing of CMOS Logic Using Logical Effort With Slope Correction , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.