Effect heterogeneity and variable selection for standardizing causal effects to a target population

[1]  Douglas G. Altman,et al.  Analysing data and undertaking meta‐analyses , 2019, Cochrane Handbook for Systematic Reviews of Interventions.

[2]  J. Robins,et al.  Generalizing causal inferences from randomized trials: counterfactual and graphical identification , 2019, 1906.10792.

[3]  Issa J. Dahabreh,et al.  Extending inferences from a randomized trial to a target population , 2019, European Journal of Epidemiology.

[4]  N. Weiss Generalizing from the results of randomized studies of treatment: Can non-randomized studies be of help? , 2019, European Journal of Epidemiology.

[5]  Stephen R Cole,et al.  Using Bounds to Compare the Strength of Exchangeability Assumptions for Internal and External Validity. , 2019, American journal of epidemiology.

[6]  E. Schisterman,et al.  Generalizing the per-protocol treatment effect: The case of ACTG A5095 , 2018, Clinical trials.

[7]  Stephen R Cole,et al.  Target Validity and the Hierarchy of Study Designs. , 2018, American journal of epidemiology.

[8]  Ashley L. Buchanan,et al.  Generalizing evidence from randomized trials using inverse probability of sampling weights , 2018, Journal of the Royal Statistical Society. Series A,.

[9]  D. Jackson,et al.  A new measure of treatment effect for random-effects meta-analysis of comparative binary outcome data , 2018, 1806.03471.

[10]  Stephen R Cole,et al.  Transportability of Trial Results Using Inverse Odds of Sampling Weights. , 2017, American journal of epidemiology.

[11]  Sarah E. Robertson,et al.  Generalizing causal inferences from individuals in randomized trials to all trial‐eligible individuals , 2017, Biometrics.

[12]  James M Robins,et al.  A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference , 2017, American journal of epidemiology.

[13]  Jessie K. Edwards,et al.  Generalizing Study Results: A Potential Outcomes Perspective. , 2017, Epidemiology.

[14]  E. Stuart,et al.  Generalizability of findings from randomized controlled trials: application to the National Institute of Drug Abuse Clinical Trials Network , 2017, Addiction.

[15]  T. VanderWeele,et al.  Evaluating Public Health Interventions: 6. Modeling Ratios or Differences? Let the Data Tell Us , 2017, American journal of public health.

[16]  M. Mansournia,et al.  Errors in causal inference: an organizational schema for systematic error and random error. , 2016, Annals of epidemiology.

[17]  S. Cole,et al.  Correction: Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects , 2016, The Annals of Applied Statistics.

[18]  A. Goldstein,et al.  The Choice of Effect Measure for Binary Outcomes: Introducing Counterfactual Outcome State Transition Parameters , 2016, Epidemiologic methods.

[19]  Etsuji Suzuki,et al.  On the collapsibility of measures of effect in the counterfactual causal framework , 2016, Emerging Themes in Epidemiology.

[20]  J. Pearl,et al.  Causal inference and the data-fusion problem , 2016, Proceedings of the National Academy of Sciences.

[21]  Tyler J. VanderWeele,et al.  Is the Risk Difference Really a More Heterogeneous Measure? , 2015, Epidemiology.

[22]  Elias Bareinboim,et al.  A General Algorithm for Deciding Transportability of Experimental Results , 2013, ArXiv.

[23]  Elias Bareinboim,et al.  Transportability of Causal and Statistical Relations: A Formal Approach , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[24]  Catherine P. Bradshaw,et al.  The use of propensity scores to assess the generalizability of results from randomized trials , 2011, Journal of the Royal Statistical Society. Series A,.

[25]  S. Cole,et al.  Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial. , 2010, American journal of epidemiology.

[26]  Douglas G. Altman,et al.  Chapter 9: Analysing Data and Undertaking Meta-Analyses , 2008 .

[27]  K. Neville,et al.  Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. , 2006, The oncologist.

[28]  J. Robins,et al.  A Structural Approach to Selection Bias , 2004, Epidemiology.

[29]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[30]  Jonathan J Deeks,et al.  Issues in the selection of a summary statistic for meta‐analysis of clinical trials with binary outcomes , 2002, Statistics in medicine.

[31]  J. Robins,et al.  Marginal Structural Models and Causal Inference in Epidemiology , 2000, Epidemiology.

[32]  James M. Robins,et al.  Association, Causation, And Marginal Structural Models , 1999, Synthese.

[33]  Les M Irwig,et al.  An evidence based approach to individualising treatment , 1995, BMJ.

[34]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[35]  W. G. Cochran The comparison of percentages in matched samples. , 1950, Biometrika.

[36]  Canary Wharf,et al.  The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) , 2012 .

[37]  M. Inoue,et al.  Generalizability of Relative Risk Estimates from a Well-defined Population to a General Population , 2006, European Journal of Epidemiology.

[38]  S Greenland,et al.  Interpretation and estimation of summary ratios under heterogeneity. , 1982, Statistics in medicine.

[39]  M. C. Sheps,et al.  Shall we count the living of the dead. , 1958, The New England journal of medicine.

[40]  Causality : Models , Reasoning , and Inference , 2022 .