Electronic structure of iron-doped misfit-layered calcium cobaltite

[1]  S. Yamanaka,et al.  Local structure determination of substitutional elements in Ca3Co4−xMxO9 (M = Fe, Cr, Ga) using X‐ray absorption spectroscopy , 2014 .

[2]  S. Yamanaka,et al.  The effect of Cr substitution on the structure and properties of misfit-layered Ca3Co4−xCrxO9+δ thermoelectric oxides , 2014 .

[3]  Yuanhua Lin,et al.  High-temperature thermoelectric properties of La and Fe co-doped Ca–Co–O misfit-layered cobaltites consolidated by spark plasma sintering , 2014 .

[4]  S. Yamanaka,et al.  Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study , 2013 .

[5]  T. Tyson,et al.  On the origin of enhanced thermoelectricity in Fe doped Ca3Co4O9 , 2013 .

[6]  S. Pinitsoontorn,et al.  Giant dielectric behavior observed in Ca3Co4O9 ceramic , 2013, Electronic Materials Letters.

[7]  F. Xu,et al.  Improving the spin entropy by suppressing Co4+ concentration in thermoelectric Ca3Co4O9+δ , 2013 .

[8]  S. Pinitsoontorn,et al.  Thermoelectric properties of transition metals-doped Ca3Co3.8M0.2O9+δ (M = Co, Cr, Fe, Ni, Cu and Zn) , 2012, Journal of Materials Science: Materials in Electronics.

[9]  S. Ogut,et al.  First-principles study of the atomic and electronic structures of misfit-layered calcium cobaltite (Ca2CoO3)(CoO2)1.62 using rational approximants , 2012 .

[10]  Yuxi Liu,et al.  Effects of Pr doping on thermoelectric transport properties of Ca3−xPrxCo4O9 , 2011 .

[11]  Daofan Zhang,et al.  Anisotropic thermopower and magnetothermopower in a misfit-layered calcium cobaltite , 2011 .

[12]  Yang Wang,et al.  High-temperature transport and thermoelectric properties of Ca3Co4-xTixO9 , 2010 .

[13]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[14]  W. Su,et al.  Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca3Co4−xMxO9 (M = Fe, Mn, and Cu)† , 2010 .

[15]  W. Su,et al.  Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication , 2010 .

[16]  S. Hirata,et al.  Electronic structure of Ca 3 Co 4 O 9 studied by photoemission spectroscopy: Phase separation and charge localization , 2008 .

[17]  Q. Ramasse,et al.  Direct measurement of charge transfer in thermoelectric Ca 3 Co 4 O 9 , 2008 .

[18]  D. Grebille,et al.  Disordered misfit [Ca(2)CoO(3)][CoO(2)](1.62) structure revisited via a new intrinsic modulation. , 2008, Acta crystallographica. Section B, Structural science.

[19]  W. Su,et al.  High temperature transport and thermoelectric properties of Ag-substituted Ca3Co4O9+δ system , 2008 .

[20]  S. Schmid,et al.  Structural investigation of oxygen non-stoichiometry and cation doping in misfit-layered thermoelectric (Ca2CoO3−x)(CoO2)δ, δ≈1.61 , 2007 .

[21]  Chia‐Jyi Liu,et al.  Improvement of the thermoelectric characteristics of Fe-doped misfit-layered Ca3Co4−xFexO9+δ (x=0, 0.05, 0.1, and 0.2) , 2006 .

[22]  R. Frésard,et al.  Unconventional Hall effect in orientedCa3Co4O9thin films , 2005, cond-mat/0511374.

[23]  L. Tjeng,et al.  X-ray absorption study of layered Co oxides with a Co-O triangular lattice , 2005 .

[24]  A. Maignan,et al.  Strongly correlated properties of the thermoelectric cobalt oxide Ca 3 Co 4 O 9 , 2005, cond-mat/0505464.

[25]  Q. Yao,et al.  Effects of partial substitution of transition metals for cobalt on the high-temperature thermoelectric properties of Ca3Co4O9+δ , 2005 .

[26]  M. Shikano,et al.  Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides , 2004 .

[27]  M. Shikano,et al.  Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure , 2003 .

[28]  T. Tani,et al.  Anisotropic magnetic properties of Ca 3 Co 4 O 9 : Evidence for a spin-density-wave transition at 27 K , 2003 .

[29]  R. Asahi,et al.  Electronic structure of misfit-layered calcium cobaltite , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[30]  Y. Morii,et al.  Modulated Structure of the Thermoelectric Compound [Ca2CoO3]0.62CoO2 , 2002 .

[31]  S. Lambert,et al.  Three forms of the misfit layered cobaltite [Ca2CoO3] [CoO2]1.62 a 4D structural investigation , 2001 .

[32]  S. Maekawa,et al.  Thermopower in cobalt oxides , 2000 .

[33]  M. Hervieu,et al.  Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca 3 Co 4 O 9 , 2000 .

[34]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[35]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[38]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[39]  Chia-Jyi Liua,et al.  Jul 10, 2020 High-temperature thermoelectric properties of late , 2010 .

[40]  T. Tritt,et al.  Thermoelectric Materials , Phenomena , and Applications : A Bird ’ s Eye View alloys based on the Bi 2 Te 3 system , 2022 .