In vivo NMR and MRI using injection delivery of laser-polarized xenon.

Because xenon NMR is highly sensitive to the local environment, laser-polarized xenon could be a unique probe of living tissues. Realization of clinical and medical science applications beyond lung airspace imaging requires methods of efficient delivery of laser-polarized xenon to tissues, because of the short spin-lattice relaxation times and relatively low concentrations of xenon attainable in the body. Preliminary results from the application of a polarized xenon injection technique for in vivo 129Xe NMR/MRI are extrapolated along with a simple model of xenon transit to show that the peak local concentration of polarized xenon delivered to tissues by injection may exceed that delivered by respiration by severalfold.

[1]  A. Pines,et al.  Selektive NMR-Signalverstärkung bei α-Cyclodextrin durch laserpolarisiertes Xenon† , 1997 .

[2]  J. H. Gao,et al.  The pharmacokinetics of hyperpolarized xenon: Implications for cerebral MRI , 1997, Journal of magnetic resonance imaging : JMRI.

[3]  E E de Lange,et al.  MR imaging and spectroscopy using hyperpolarized 129Xe gas: Preliminary human results , 1997, Magnetic resonance in medicine.

[4]  J. H. Gao,et al.  Longitudinal relaxation and diffusion measurements using magnetic resonance signals from laser-hyperpolarized 129Xe nuclei. , 1997, Journal of magnetic resonance.

[5]  T. Budinger,et al.  NMR of laser-polarized xenon in human blood. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A Potthast,et al.  Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. , 1996, Radiology.

[7]  F. Jolesz,et al.  Gradient-Echo Imaging Considerations for Hyperpolarized 129Xe MR , 1996, Journal of magnetic resonance. Series B.

[8]  F. Jolesz,et al.  Determinants of tissue delivery for 129Xe magnetic resonance in humans , 1996, Magnetic resonance in medicine.

[9]  H C Charles,et al.  Human lung air spaces: potential for MR imaging with hyperpolarized He-3. , 1996, Radiology.

[10]  H F Li,et al.  In vivo MR imaging and spectroscopy using hyperpolarized 129Xe , 1996, Magnetic resonance in medicine.

[11]  Peter Bachert,et al.  Nuclear magnetic resonance imaging of airways in humans with use of hyperpolarized 3He , 1996, Magnetic resonance in medicine.

[12]  L W Hedlund,et al.  In vivo He-3 MR images of guinea pig lungs. , 1996, Radiology.

[13]  R. Walsworth,et al.  Temporal dynamics of hyperpolarized 129Xe resonances in living rats. , 1996, Journal of magnetic resonance. Series B.

[14]  D. Kacher,et al.  Hyperpolarized 129Xe MR imaging of the oral cavity. , 1996, Journal of magnetic resonance. Series B.

[15]  Gil Navon,et al.  Enhancement of Solution NMR and MRI with Laser-Polarized Xenon , 1996, Science.

[16]  T. Budinger,et al.  Measurement of 129Xe T1 in Blood to Explore the Feasibility of Hyperpolarized 129Xe MRI , 1995, Journal of computer assisted tomography.

[17]  H. Gaede,et al.  Optically Polarized 129Xe in NMR Spectroscopy , 1995 .

[18]  Yi-Qiao Song,et al.  Spin-Polarized 129Xe Gas Imaging of Materials , 1995 .

[19]  L. Hedlund,et al.  MR Imaging with Hyperpolarized 3He Gas , 1995, Magnetic resonance in medicine.

[20]  W. Happer,et al.  Biological magnetic resonance imaging using laser-polarized 129Xe , 1994, Nature.

[21]  Cates,et al.  Extraordinarily slow nuclear spin relaxation in frozen laser-polarized 129Xe. , 1993, Physical review letters.

[22]  R. Kennedy,et al.  Anaesthesia and the ‘Inert’ Gases with Special Reference to Xenon , 1992, Anaesthesia and intensive care.

[23]  Long,et al.  High-field NMR of adsorbed xenon polarized by laser pumping. , 1991, Physical review letters.

[24]  J. Caillé,et al.  Measurement of cerebral blood flow by the stable xenon computerized tomography method. , 1990, Journal of neuroradiology. Journal de neuroradiologie.

[25]  E. Barrett-Connor,et al.  Is hypertension more benign when associated with obesity? , 1985, Circulation.

[26]  E. Miron,et al.  Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms , 1984 .

[27]  K. Miller,et al.  Xenon NMR: chemical shifts of a general anesthetic in common solvents, proteins, and membranes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S Chien,et al.  Tissue-blood partition coefficient for xenon: temperature and hematocrit dependence. , 1980, Journal of applied physiology: respiratory, environmental and exercise physiology.

[29]  Timothy A. Miller,et al.  133Xe muscle clearance: a screening test for arterial occlusive disease. , 1975, Radiology.

[30]  A. Richens,et al.  Letter: Thymoxamine and spasticity. , 1974, Lancet.

[31]  H. H. Borgstedt,et al.  Tissue weights and rates of blood flow in man for the prediction of anesthetic uptake and distribution. , 1971, Anesthesiology.

[32]  P. Schofield,et al.  MEASUREMENT OF THE SOLUBILITY OF XENON-133 IN BLOOD AND HUMAN BRAIN. , 1965, Physics in medicine and biology.

[33]  N. Lassen,et al.  MEASUREMENT OF BLOOD-FLOW THROUGH SKELETAL MUSCLE BY INTRAMUSCULAR INJECTION OF XENON-133. , 1964, Lancet.

[34]  M. Bouchiat,et al.  Nuclear Polarization in He 3 Gas Induced by Optical Pumping and Dipolar Exchange , 1960 .

[35]  Alfred Kastler,et al.  Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique , 1950 .