Internal lattice relaxation of single-layer graphene under in-plane deformation

For noncentrosymmetric crystals, internal lattice relaxation must be considered for theoretical predictions of elastic properties. This paper develops a molecular dynamics approach for determination of the internal relaxation displacement in a single-layer graphene sheet under macroscopically homogeneous in-plane deformation. Based on an analytical interatomic potential, a generally nonlinear relationship between the internal relaxation displacement and the applied macroscopic strain is obtained explicitly from molecular dynamics simulations with a rhombic unit cell under finite deformation. A linear relationship is derived for relatively small strains, which can be conveniently incorporated into a continuum description of the elastic behavior of graphene. It is found that the internal relaxation has a strong effect on theoretical elastic moduli of graphene. In addition, the relationship between elastic properties for graphene and carbon nanotubes is discussed.

[1]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[2]  Y. Fung,et al.  Classical and Computational Solid Mechanics , 2001 .

[3]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[4]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[5]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[6]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[7]  Huajian Gao,et al.  The effect of nanotube radius on the constitutive model for carbon nanotubes , 2003 .

[8]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[9]  J. B. Wang,et al.  Predicting the elastic properties of single-walled carbon nanotubes , 2005 .

[10]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[11]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[12]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[13]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[14]  Gene Dresselhaus,et al.  Lattice-dynamical model for graphite , 1982 .

[15]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[16]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[17]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[18]  Ted Belytschko,et al.  Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule , 2004 .

[19]  Hanqing Jiang,et al.  A Finite-Temperature Continuum Theory Based on Interatomic , 2005 .

[20]  J. Brink Graphene: from strength to strength. , 2007 .

[21]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[22]  F. Yuan,et al.  Simulation of elastic properties of single-walled carbon nanotubes , 2003 .

[23]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[24]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[25]  N. Bellamy Mechanical and Electromechanical Devices , 1993 .

[26]  Huajian Gao,et al.  Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model , 2003 .

[27]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[28]  J W Martin,et al.  Many-body forces in solids and the Brugger elastic constants. II. Inner elastic constants , 1975 .

[29]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[30]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[31]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[32]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[33]  J. van den Brink Graphene: from strength to strength. , 2007, Nature nanotechnology.

[34]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[35]  Haiyi Liang,et al.  Axial-strain-induced torsion in single-walled carbon nanotubes. , 2006, Physical review letters.

[36]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[37]  Nan Yao,et al.  Young’s modulus of single-walled carbon nanotubes , 1998 .

[38]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[39]  Tienchong Chang,et al.  Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes , 2006 .

[40]  Ray H. Baughman,et al.  Mechanical and electromechanical coupling in carbon nanotube distortions , 2003 .