Adaptive compensation of modeled friction using a RBF neural network approximation

We present a compensation technique for a friction model, which captures problematic friction effects such as Stribeck effect, hysteresis, pre-sliding displacement, stick- slip motion and stiction. The proposed control utilizes a PD control structure and an adaptive estimate of the friction force. Specifically, a radial basis function (RBF) is used to compensate the effects of the non-linear friction model. The asymptotic convergence of parameter estimation errors is achieved for the system in adaptive observer form using Barbalat's Lemma. We also introduce a parameter estimation projection algorithm to avoid the parameter estimates drift when the condition of persistency of excitation is not verified. Finally, to support the theoretical concepts, we present dynamic simulations for the proposed control scheme.

[1]  G. Boothroyd,et al.  Damping at Metallic Interfaces Subjected to Oscillating Tangential Loads , 1975 .

[2]  K. Narendra,et al.  A new adaptive law for robust adaptation without persistent excitation , 1987 .

[3]  David J. Hill,et al.  Robustness of adaptive control without deadzones, data normalization or persistence of excitation , 1989, Autom..

[4]  Naomi Ehrich Leonard,et al.  Adaptive friction compensation for bi-directional low-velocity position tracking , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[5]  P. Dupont Avoiding stick-slip through PD control , 1994, IEEE Trans. Autom. Control..

[6]  Weiping Li,et al.  Adaptive high-precision control of positioning tables-theory and experiments , 1994, IEEE Trans. Control. Syst. Technol..

[7]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[8]  F. J. Narcowich,et al.  Persistency of Excitation in Identification Using Radial Basis Function Approximants , 1995 .

[9]  Dimitry M. Gorinevsky,et al.  On the persistency of excitation in radial basis function network identification of nonlinear systems , 1995, IEEE Trans. Neural Networks.

[10]  Theodorus J.A. de Vries,et al.  Linear motor motion control using a learning feedworward controller , 1997 .

[11]  Toshio Fukuda,et al.  Fuzzy neural friction compensation method of robot manipulation during position/force control , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  H. Flashner,et al.  Neural network based tracking control for mechanical systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[13]  Jan Swevers,et al.  An integrated friction model with improved presliding behaviour , 1997 .

[14]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[15]  Rolf Eckmiller,et al.  Learning friction estimation for sensorless force/position control in industrial manipulators , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  Ser Yong Lim,et al.  Two-degree-of-freedom controller incorporating RBF adaptation for precision motion control applications , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[17]  Toshio Fukuda,et al.  Fuzzy-neuro position/force control of robot manipulators-two-stage adaptation approach , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[18]  Seppo J. Ovaska,et al.  Friction compensation in servo motor systems using neural networks , 1999, SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269).

[19]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[20]  Kok Kiong Tan,et al.  Adaptive friction compensation using neural network approximations , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[21]  Frank L. Lewis,et al.  Optimal design of CMAC neural-network controller for robot manipulators , 2000, IEEE Trans. Syst. Man Cybern. Part C.