Regular Expressions for Languages over Infinite Alphabets

In this paper we introduce a notion of a regular expression over infinite alphabets and show that a language is definable by an infinite alphabet regular expression if and only if it is accepted by finite-state unification based automaton - a model of computation that is tightly related to other models of automata over infinite alphabets.

[1]  Ronald L. Rivest,et al.  The Design and Analysis of Computer Algorithms , 1990 .

[2]  Thomas Schwentick,et al.  Finite state machines for strings over infinite alphabets , 2004, TOCL.

[3]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[4]  Joffroy Beauquier,et al.  Formes de langages et de grammaires , 1982, Acta Informatica.

[5]  Friedrich Otto Classes of regular and context-free languages over countably infinite alphabets , 1985, Discret. Appl. Math..

[6]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[7]  Joffroy Beauquier,et al.  Langages sur des alphabets infinis , 1980, Discret. Appl. Math..

[8]  Peter Bro Miltersen,et al.  On Pseudorandom Generators in NC , 2001, MFCS.

[9]  Benedikt Bollig,et al.  Generalised Regular MSC Languages , 2002, FoSSaCS.

[10]  Nissim Francez,et al.  Finite-State Unification Automata and Relational Languages , 1994, Inf. Comput..

[11]  Hiroshi Sakamoto,et al.  Intractability of decision problems for finite-memory automata , 2000, Theor. Comput. Sci..

[12]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[13]  Jeanne Idt Automates a pile sur des alphabets infinis , 1984, STACS.

[14]  Jan Van den Bussche,et al.  Navigating with a Browser , 2002, ICALP.

[15]  Nissim Francez,et al.  Finite-Memory Automata , 1994, Theor. Comput. Sci..

[16]  Thomas Schwentick,et al.  Towards Regular Languages over Infinite Alphabets , 2001, MFCS.

[17]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..