Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study.

[1]  William A Knaus,et al.  Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012 , 2013, Critical Care.

[2]  L. Citi,et al.  PhysioNet 2012 Challenge: Predicting mortality of ICU patients using a cascaded SVM-GLM paradigm , 2012, 2012 Computing in Cardiology.

[3]  Alistair E. W. Johnson,et al.  Patient specific predictions in the intensive care unit using a Bayesian ensemble , 2012, 2012 Computing in Cardiology.

[4]  Antonio Paulo Nassar,et al.  Caution when using prognostic models: a prospective comparison of 3 recent prognostic models. , 2012, Journal of critical care.

[5]  Nicola Latronico,et al.  Comparison between SAPS II and SAPS 3 in predicting hospital mortality in a cohort of 103 Italian ICUs. Is new always better? , 2012, Intensive Care Medicine.

[6]  Alfredo Vellido,et al.  Severe sepsis mortality prediction with relevance vector machines , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[7]  Woojae Kim,et al.  A Comparison of Intensive Care Unit Mortality Prediction Models through the Use of Data Mining Techniques , 2011, Healthcare informatics research.

[8]  Mohammed Saeed,et al.  Open-access MIMIC-II database for intensive care research , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  T. H. Kyaw,et al.  Multiparameter Intelligent Monitoring in Intensive Care II: A public-access intensive care unit database* , 2011, Critical care medicine.

[10]  N. Halpern,et al.  Critical care medicine in the United States 2000–2005: An analysis of bed numbers, occupancy rates, payer mix, and costs* , 2010, Critical care medicine.

[11]  G. Tutz,et al.  An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. , 2009, Psychological methods.

[12]  Peter Bauer,et al.  Austrian validation and customization of the SAPS 3 Admission Score , 2009, Intensive Care Medicine.

[13]  K. Reinhart,et al.  Comparison of the performance of SAPS II, SAPS 3, APACHE II, and their customized prognostic models in a surgical intensive care unit. , 2008, British journal of anaesthesia.

[14]  Jean-Charles Preiser,et al.  SAPS 3 admission score: an external validation in a general intensive care population , 2008, Intensive Care Medicine.

[15]  Peter Szolovits,et al.  Automated de-identification of free-text medical records , 2008, BMC Medical Informatics Decis. Mak..

[16]  M. Pencina,et al.  Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond , 2008, Statistics in medicine.

[17]  Sander Greenland,et al.  The need for reorientation toward cost‐effective prediction: Comments on ‘Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929) , 2008, Statistics in medicine.

[18]  N. Cook Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. , 2008, Clinical chemistry.

[19]  J. Zimmerman,et al.  Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited* , 2007, Critical care medicine.

[20]  H. Goldman Is new always better? , 2007, Current Urology Reports.

[21]  S. Morris,et al.  Cost effectiveness of adult intensive care in the UK , 2007, Anaesthesia.

[22]  Mark J van der Laan,et al.  Super Learning: An Application to the Prediction of HIV-1 Drug Resistance , 2007, Statistical applications in genetics and molecular biology.

[23]  N. Cook Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction , 2007, Circulation.

[24]  James R Carpenter,et al.  Recalibration of risk prediction models in a large multicenter cohort of admissions to adult, general critical care units in the United Kingdom* , 2006, Critical care medicine.

[25]  Thomas Lengauer,et al.  ROCR: visualizing classifier performance in R , 2005, Bioinform..

[26]  François Hemery,et al.  Mortality prediction using SAPS II: an update for French intensive care units , 2005, Critical care.

[27]  Peter Bauer,et al.  SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission , 2005, Intensive Care Medicine.

[28]  S. Dudoit,et al.  Asymptotics of cross-validated risk estimation in estimator selection and performance assessment , 2005 .

[29]  Etienne Minvielle,et al.  SAPS II revisited , 2005, Intensive Care Medicine.

[30]  J. Vincent,et al.  The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure , 1996, Intensive Care Medicine.

[31]  Gary B. Smith,et al.  External validation of the SAPS II, APACHE II and APACHE III prognostic models in South England: a multicentre study , 2003, Intensive Care Medicine.

[32]  S. Dudoit,et al.  Unified Cross-Validation Methodology For Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-Net Estimator: Finite Sample Oracle Inequalities and Examples , 2003 .

[33]  A. Rosenberg Recent innovations in intensive care unit risk-prediction models , 2002, Current opinion in critical care.

[34]  J. Habbema,et al.  Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. , 2001, Journal of clinical epidemiology.

[35]  G. Clermont,et al.  Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models , 2001, Critical care medicine.

[36]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[37]  G. Apolone,et al.  One model, several results: the paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model. , 2000, Journal of epidemiology and biostatistics.

[38]  R. Dybowski,et al.  Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm , 1996, The Lancet.

[39]  S. Lemeshow,et al.  A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study , 1993 .

[40]  S. Lemeshow,et al.  Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. , 1993, JAMA.

[41]  W. Knaus The APACHE III Prognostic System , 1992 .

[42]  W. Knaus,et al.  The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. , 1991, Chest.

[43]  S L Hui,et al.  Validation techniques for logistic regression models. , 1991, Statistics in medicine.

[44]  W. Knaus,et al.  APACHE II: a severity of disease classification system. , 1985 .

[45]  J. L. Gall,et al.  A simplified acute physiology score for ICU patients , 1984, Critical care medicine.

[46]  D. E. Lawrence,et al.  APACHE—acute physiology and chronic health evaluation: a physiologically based classification system , 1981, Critical care medicine.

[47]  D. Cox Two further applications of a model for binary regression , 1958 .