Using single photons to improve fiber optic communication systems

We show how to generate, encode, transmit and detect single photons. By using single photons we can address two of the more challenging problems that communication engineers face nowadays: capacity and security. Indeed, by decreasing the number of photons used to encode each bit, we can efficiently explore the full capacity to carry information of optical fibers, and we can guarantee privacy at the physical layer. We present results for single and entangled photon generation. We encode information in the photons polarization and after transmission we retrieve that information. We discuss the impact of fiber birefringence on the photons polarization.

[1]  M. Karlsson,et al.  Power-Efficient Modulation Formats in Coherent Transmission Systems , 2009, Journal of Lightwave Technology.

[2]  A. N. Pinto,et al.  Role of Absorption on the Generation of Quantum-Correlated Photon Pairs Through FWM , 2012, IEEE Journal of Quantum Electronics.

[3]  A. N. Pinto,et al.  Effects of Losses and Nonlinearities on the Generation of Polarization Entangled Photons , 2013, Journal of Lightwave Technology.

[4]  Armando N. Pinto,et al.  Quantum Communications , 2020, Fiber and Integrated Optics.

[5]  G. Weihs,et al.  Coherence measures for heralded single-photon sources , 2008, 0807.1725.

[6]  Julius Goldhar,et al.  Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination , 2013, Nature Photonics.

[7]  Wolfgang Tittel,et al.  Practical Aspects of Quantum Cryptographic Key Distribution , 2000, Journal of Cryptology.

[8]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[9]  N. Silva,et al.  Evolution of the degree of co-polarization in high-birefringence fibers , 2010 .

[10]  Hidema Tanaka,et al.  Quantum detection of wavelength-division-multiplexing optical coherent signals , 2010 .

[11]  P. Wai,et al.  Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence , 1996 .

[12]  N. Muga,et al.  QBER Estimation in QKD Systems With Polarization Encoding , 2011, Journal of Lightwave Technology.

[13]  L. B. Shaw,et al.  Raman response in chalcogenide As2S3 fiber , 2009, 2009 14th OptoElectronics and Communications Conference.

[14]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[15]  Cyrus D. Cantrell,et al.  Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function , 2002 .

[16]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[17]  Armando N. Pinto,et al.  Optimization of polarization control schemes for QKD systems , 2011, Applications of Optics and Photonics.

[18]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[19]  M. Martinelli,et al.  Polarization Stabilization in Optical Communications Systems , 2006, Journal of Lightwave Technology.

[20]  Fatih Yaman,et al.  Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization , 2007 .

[21]  O. Benson,et al.  Direct measurement of heralded single-photon statistics from a parametric down-conversion source , 2011 .

[22]  Gisin,et al.  Unambiguous quantum measurement of nonorthogonal states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .

[24]  René-Jean Essiambre,et al.  Capacity Trends and Limits of Optical Communication Networks , 2012, Proceedings of the IEEE.

[25]  F. Guiomar,et al.  Simplified Volterra Series Nonlinear Equalizer for Polarization-Multiplexed Coherent Optical Systems , 2013, Journal of Lightwave Technology.

[26]  G. Weihs,et al.  Characterizing heralded single-photon sources with imperfect measurement devices , 2008, 0812.2445.

[27]  O. Karlsson,et al.  Long-term measurement of PMD and polarization drift in installed fibers , 2000, Journal of Lightwave Technology.

[28]  Armando N. Pinto,et al.  Comprehensive characterization of a heralded single photon source based on four-wave mixing in optical fibers , 2014 .

[29]  N. Silva,et al.  Effective Nonlinear Parameter Measurement Using FWM in Optical Fibers in a Low Power Regime , 2010, IEEE Journal of Quantum Electronics.

[30]  Armando N. Pinto,et al.  Critical issues in polarization encoded quantum key distribution systems , 2011, 2011 IEEE EUROCON - International Conference on Computer as a Tool.

[31]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[32]  Partha P. Mitra,et al.  Nonlinear limits to the information capacity of optical fibre communications , 2000, Nature.

[33]  J. Pierce,et al.  Optical Channels: Practical Limits with Photon Counting , 1978, IEEE Trans. Commun..

[34]  Armando N. Pinto,et al.  Photon-pair Generation in Chalcogenide Glass - Role of Waveguide Linear Absorption , 2016, PHOTOPTICS 2016.