Differential Equation Invariance Axiomatization

This article proves the completeness of an axiomatization for differential equation invariants described by Noetherian functions. First, the differential equation axioms of differential dynamic logic are shown to be complete for reasoning about analytic invariants. Completeness crucially exploits differential ghosts, which introduce additional variables that can be chosen to evolve freely along new differential equations. Cleverly chosen differential ghosts are the proof-theoretical counterpart of dark matter. They create a new hypothetical state, whose relationship to the original state variables satisfies invariants that did not exist before. The reflection of these new invariants in the original system then enables its analysis. An extended axiomatization with existence and uniqueness axioms is complete for all local progress properties, and, with a real induction axiom, is complete for all semianalytic invariants. This parsimonious axiomatization serves as the logical foundation for reasoning about invariants of differential equations. Indeed, it is precisely this logical treatment that enables the generalization of completeness to the Noetherian case.

[1]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[2]  Cody Roux,et al.  A Heuristic Prover for Real Inequalities , 2014, ITP.

[3]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[4]  André Platzer,et al.  Differential Equation Axiomatization: The Impressive Power of Differential Ghosts , 2018, LICS.

[5]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[6]  Gal Binyamini Density of algebraic points on Noetherian varieties , 2017, Geometric and Functional Analysis.

[7]  H. Poincaré,et al.  Mémoire sur les courbes définies par une équationdifférentielle (I) , 1881 .

[8]  Algèbres analytiques topologiquement noéthériennes. Théorie de Khovanskii , 1991 .

[9]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[10]  André Platzer,et al.  A Complete Axiomatization of Quantified Differential Dynamic Logic for Distributed Hybrid Systems , 2012, Log. Methods Comput. Sci..

[11]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[12]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[13]  Volker Weispfenning,et al.  Deciding polynomial-transcendental problems , 2012, J. Symb. Comput..

[14]  Nicolai Vorobjov,et al.  Pfaffian Hybrid Systems , 2004, CSL.

[15]  S. Shankar Sastry,et al.  O-Minimal Hybrid Systems , 2000, Math. Control. Signals Syst..

[16]  Liang Zou,et al.  Abstraction of Elementary Hybrid Systems by Variable Transformation , 2014, FM.

[17]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[18]  André Platzer,et al.  A hierarchy of proof rules for checking positive invariance of algebraic and semi-algebraic sets , 2017, Comput. Lang. Syst. Struct..

[19]  André Platzer,et al.  A Differential Operator Approach to Equational Differential Invariants - (Invited Paper) , 2012, ITP.

[20]  André Platzer,et al.  The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..

[21]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.

[22]  A. Gabrielov,et al.  Complexity of computations with Pfaffian and Noetherian functions , 2004 .

[23]  Ashish Tiwari,et al.  Deductive Verification of Continuous Dynamical Systems , 2009, FSTTCS.

[24]  Thomas A. Henzinger,et al.  Handbook of Model Checking , 2018, Springer International Publishing.

[25]  André Platzer,et al.  Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..

[26]  André Platzer,et al.  Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.

[27]  Edmund M. Clarke,et al.  Delta-Decidability over the Reals , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[28]  Thomas A. Henzinger,et al.  It's About Time: Real-Time Logics Reviewed , 1998, CONCUR.

[29]  L. Dries Remarks on Tarski's problem concerning (R, +, *, exp) , 1984 .

[30]  Patrick Speissegger,et al.  The Pfaffian closure of an o-minimal structure , 1997, math/9710220.

[31]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[32]  Naijun Zhan,et al.  Computing semi-algebraic invariants for polynomial dynamical systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[33]  Nathan Fulton,et al.  KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems , 2015, CADE.

[34]  Pete L. Clark,et al.  The Instructor’s Guide to Real Induction , 2012, Mathematics Magazine.

[35]  R. Tennant Algebra , 1941, Nature.

[36]  MULTIPLICITY OF A NOETHERIAN INTERSECTION , 2009 .

[37]  A. Wilkie A theorem of the complement and some new o-minimal structures , 1999 .

[38]  André Platzer,et al.  Formally verified differential dynamic logic , 2017, CPP.

[39]  G. Darboux,et al.  Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .

[40]  Sergei Yakovenko,et al.  Trajectories of polynomial vector fields and ascending chains of polynomial ideals , 1999 .

[41]  Daniel S. Graça,et al.  Computability with polynomial differential equations , 2008, Adv. Appl. Math..

[42]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2004, Formal Methods Syst. Des..

[43]  N. Bourbaki Commutative Algebra: Chapters 1-7 , 1989 .

[44]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[45]  André Platzer,et al.  A Complete Uniform Substitution Calculus for Differential Dynamic Logic , 2016, Journal of Automated Reasoning.

[46]  Edmund M. Clarke,et al.  dReal: An SMT Solver for Nonlinear Theories over the Reals , 2013, CADE.

[47]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[48]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[49]  G. Terzo Consequences of Schanuel’s Conjecture in exponential algebra , 2007 .

[50]  Marie-Françoise Roy,et al.  Witt Rings in Real Algebraic Geometry , 1998 .

[51]  Gert Sabidussi,et al.  Normal Forms, Bifurcations and Finiteness Problems in Differential Equations , 2004 .