Bivariate polynomial interpolation on the square at new nodal sets

Abstract As known, the problem of choosing “good” nodes is a central one in polynomial interpolation. While the problem is essentially solved in one dimension (all good nodal sequences are asymptotically equidistributed with respect to the arc-cosine metric), in several variables it still represents a substantially open question. In this work we consider new nodal sets for bivariate polynomial interpolation on the square. First, we consider fast Leja points for tensor-product interpolation. On the other hand, for interpolation in P n 2 on the square we experiment four families of points which are (asymptotically) equidistributed with respect to the Dubiner metric, which extends to higher dimension the arc-cosine metric. One of them, nicknamed Padua points, gives numerically a Lebesgue constant growing like log square of the degree.

[1]  J. G. Van der Corput,et al.  Ungleichungen für Polynome und trigonometrische Polynome , 1935 .

[2]  Yuan Xu,et al.  Gaussian cubature and bivariate polynomial interpolation , 1992 .

[3]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[4]  Yuan Xu,et al.  On multivariate orthogonal polynomials , 1993 .

[5]  Stefano De Marchi,et al.  On Leja sequences: some results and applications , 2004, Appl. Math. Comput..

[6]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[7]  L. Schumaker,et al.  Surface Fitting and Multiresolution Methods , 1997 .

[8]  L. Reichel Newton interpolation at Leja points , 1990 .

[9]  Giuseppe Mastroianni,et al.  Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey , 2001 .

[10]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[11]  Holger Wendland,et al.  Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..

[12]  Moshe Dubiner The theory of multi-dimensional polynomial approximation , 1995 .

[13]  P. Lancaster Curve and surface fitting , 1986 .

[14]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[15]  Mark A. Taylor,et al.  Tensor product Gauss-Lobatto points are Fekete points for the cube , 2001, Math. Comput..

[16]  J. Baglama,et al.  FAST LEJA POINTS , 1998 .

[17]  L. Ros On Certain Configurations of Points in W” Which Are Unisolvent for Polynomial interpolation , 2003 .

[18]  T. N. L. Patterson,et al.  Construction of Algebraic Cubature Rules Using Polynomial Ideal Theory , 1978 .

[19]  Len Bos,et al.  On certain configurations of points in R n which are unisolvent for polynomial interpolation , 1991 .

[20]  F. Leja Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme , 1957 .