A Primer to Single-Particle Cryo-Electron Microscopy

[1]  Yifan Cheng Single-Particle Cryo-EM at Crystallographic Resolution , 2015, Cell.

[2]  Marcus A. Brubaker,et al.  Alignment of cryo-EM movies of individual particles by optimization of image translations. , 2014, Journal of structural biology.

[3]  S. Scheres,et al.  How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.

[4]  Lori A. Passmore,et al.  Ultrastable gold substrates for electron cryomicroscopy , 2014, Science.

[5]  Prashant Rao,et al.  Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports , 2014, Scientific Reports.

[6]  S. Scheres Beam-induced motion correction for sub-megadalton cryo-EM particles , 2014, eLife.

[7]  J. Qian,et al.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor , 2014, Nature.

[8]  Pawel A Penczek,et al.  CTER-rapid estimation of CTF parameters with error assessment. , 2014, Ultramicroscopy.

[9]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[10]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[11]  N. Grigorieff,et al.  Quantitative characterization of electron detectors for transmission electron microscopy. , 2013, Journal of structural biology.

[12]  Robert M Glaeser,et al.  Invited review article: Methods for imaging weak-phase objects in electron microscopy. , 2013, The Review of scientific instruments.

[13]  Marin van Heel,et al.  Finding trimeric HIV-1 envelope glycoproteins in random noise , 2013 .

[14]  David A Agard,et al.  Influence of electron dose rate on electron counting images recorded with the K2 camera. , 2013, Journal of structural biology.

[15]  Sriram Subramaniam,et al.  Structure of trimeric HIV-1 envelope glycoproteins , 2013, Proceedings of the National Academy of Sciences.

[16]  Richard Henderson,et al.  Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise , 2013, Proceedings of the National Academy of Sciences.

[17]  S. Ludtke,et al.  Single-particle cryo-EM of calcium release channels: structural validation. , 2013, Current opinion in structural biology.

[18]  Dmitry Lyumkis,et al.  Likelihood-based classification of cryo-EM images using FREALIGN. , 2013, Journal of structural biology.

[19]  Youdong Mao,et al.  Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer , 2013, Proceedings of the National Academy of Sciences.

[20]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[21]  Roberto Marabini,et al.  On the development of three new tools for organizing and sharing information in three-dimensional electron microscopy. , 2013, Acta crystallographica. Section D, Biological crystallography.

[22]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[23]  Sriram Subramaniam,et al.  Cryo‐electron microscopy – a primer for the non‐microscopist , 2013, The FEBS journal.

[24]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[25]  Dominika Elmlund,et al.  SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. , 2012, Journal of structural biology.

[26]  A. Cheng,et al.  Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. , 2012, Structure.

[27]  Alp Kucukelbir,et al.  A Bayesian adaptive basis algorithm for single particle reconstruction. , 2012, Journal of structural biology.

[28]  Jason Brownlee,et al.  Clever Algorithms: Nature-Inspired Programming Recipes , 2012 .

[29]  Peter B Rosenthal,et al.  Paraxial charge compensator for electron cryomicroscopy. , 2012, Ultramicroscopy.

[30]  A. Cheng,et al.  Beam-induced motion of vitrified specimen on holey carbon film. , 2012, Journal of structural biology.

[31]  Pawel A Penczek,et al.  Iterative stable alignment and clustering of 2D transmission electron microscope images. , 2012, Structure.

[32]  M. Baker,et al.  Outcome of the First Electron Microscopy Validation Task Force Meeting , 2012, Structure.

[33]  Anchi Cheng,et al.  Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. , 2011, Journal of structural biology.

[34]  Richard Henderson,et al.  Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy , 2011, Journal of molecular biology.

[35]  Marek Kimmel,et al.  Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. , 2011, Structure.

[36]  E. Orlova,et al.  Structural Analysis of Macromolecular Assemblies by Electron Microscopy , 2011, Chemical reviews.

[37]  Robert M Glaeser,et al.  Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. , 2011, Journal of structural biology.

[38]  Clinton S Potter,et al.  Cryomesh™: A New Substrate for Cryo-Electron Microscopy , 2010, Microscopy and Microanalysis.

[39]  Pawel A Penczek,et al.  Image restoration in cryo-electron microscopy. , 2010, Methods in enzymology.

[40]  P. Penczek Resolution measures in molecular electron microscopy. , 2010, Methods in enzymology.

[41]  Pawel A Penczek,et al.  Fundamentals of three-dimensional reconstruction from projections. , 2010, Methods in enzymology.

[42]  H. Stark,et al.  Cryonegative staining of macromolecular assemblies. , 2010, Methods in enzymology.

[43]  Christopher Irving,et al.  Automation in single-particle electron microscopy connecting the pieces. , 2010, Methods in enzymology.

[44]  C. Spahn,et al.  Multiparticle cryo-EM of ribosomes. , 2010, Methods in enzymology.

[45]  Pawel A Penczek,et al.  Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. , 2009, Current opinion in structural biology.

[46]  R. Henderson,et al.  Detective quantum efficiency of electron area detectors in electron microscopy , 2009, Ultramicroscopy.

[47]  E. Boekema,et al.  Single particle electron microscopy , 2009, Photosynthesis Research.

[48]  Thomas Walz,et al.  Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy , 2004, Biological Procedures Online.

[49]  Henning Urlaub,et al.  GraFix: sample preparation for single-particle electron cryomicroscopy , 2008, Nature Methods.

[50]  R Henderson,et al.  Electronic detectors for electron microscopy. , 2007, Current opinion in structural biology.

[51]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[52]  Nikolaus Grigorieff,et al.  FREALIGN: high-resolution refinement of single particle structures. , 2007, Journal of structural biology.

[53]  James Z Chen,et al.  SIGNATURE: a single-particle selection system for molecular electron microscopy. , 2007, Journal of structural biology.

[54]  Chao Yang,et al.  SPARX, a new environment for Cryo-EM image processing. , 2007, Journal of structural biology.

[55]  Eric Westhof,et al.  Structure of the ribosome-bound cricket paralysis virus IRES RNA , 2006, Nature Structural &Molecular Biology.

[56]  George T Detitta,et al.  Thermofluor-based high-throughput stability optimization of proteins for structural studies. , 2006, Analytical biochemistry.

[57]  J. Frank,et al.  A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. , 2006, Journal of structural biology.

[58]  Thomas Walz,et al.  Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. , 2006, Journal of molecular biology.

[59]  Clinton S Potter,et al.  ACE: automated CTF estimation. , 2005, Ultramicroscopy.

[60]  Pawel A Penczek,et al.  Estimating alignment errors in sets of 2-D images. , 2005, Journal of structural biology.

[61]  N. Grigorieff,et al.  Noise bias in the refinement of structures derived from single particles. , 2004, Ultramicroscopy.

[62]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[63]  S. Wakil,et al.  Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis. , 2004, Structure.

[64]  Fred J Sigworth,et al.  Classical detection theory and the cryo-EM particle selection problem. , 2004, Journal of structural biology.

[65]  Ardan Patwardhan,et al.  A two step approach for semi-automated particle selection from low contrast cryo-electron micrographs. , 2004, Journal of structural biology.

[66]  Pawel A Penczek,et al.  Application of template matching technique to particle detection in electron micrographs. , 2004, Journal of structural biology.

[67]  Robert M Glaeser,et al.  A binary segmentation approach for boxing ribosome particles in cryo EM micrographs. , 2004, Journal of structural biology.

[68]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[69]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[70]  Pawel A Penczek,et al.  Automated determination of parameters describing power spectra of micrograph images in electron microscopy. , 2003, Journal of structural biology.

[71]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[72]  H. Stark,et al.  Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra. , 2003, Journal of structural biology.

[73]  Alasdair C. Steven,et al.  Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy , 2003, Nature Structural Biology.

[74]  Laurent Joyeux,et al.  Efficiency of 2D alignment methods. , 2002, Ultramicroscopy.

[75]  Terrence G. Frey,et al.  Single Particle Reconstruction , 2002 .

[76]  N Boisset,et al.  Lumbricus terrestris hemoglobin--the architecture of linker chains and structural variation of the central toroid. , 2001, Journal of structural biology.

[77]  G J Jensen,et al.  Alignment error envelopes for single particle analysis. , 2001, Journal of structural biology.

[78]  W Chiu,et al.  Fourier amplitude decay of electron cryomicroscopic images of single particles and effects on structure determination. , 2001, Journal of structural biology.

[79]  N Grigorieff,et al.  Resolution measurement in structures derived from single particles. , 2000, Acta crystallographica. Section D, Biological crystallography.

[80]  J Frank,et al.  Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. , 1997, Science.

[81]  J. Frank,et al.  Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. , 1997, Journal of structural biology.

[82]  J. Frank Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State , 1996 .

[83]  W Chiu,et al.  CTF determination of images of ice-embedded single particles using a graphics interface. , 1996, Journal of structural biology.

[84]  M van Heel,et al.  A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.

[85]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[86]  Joachim Frank,et al.  Automatic Particle Picking From Electron Micrographs , 1995, Microscopy Today.

[87]  J. Frank,et al.  The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. , 1994, Ultramicroscopy.

[88]  R. H. Wade A brief look at imaging and contrast transfer , 1992 .

[89]  J Frank,et al.  Three-dimensional reconstruction of single particles embedded in ice. , 1992, Ultramicroscopy.

[90]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[91]  J. Frank,et al.  Three‐dimensional reconstruction from a single‐exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli , 1987, Journal of microscopy.

[92]  M. Heel,et al.  Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. , 1987 .

[93]  M. Heel,et al.  Characteristic views of E. coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope. , 1985, The EMBO journal.

[94]  Joachim Frank,et al.  SPIDER—A modular software system for electron image processing , 1981 .

[95]  David G. Stork,et al.  Pattern Classification , 1973 .

[96]  F. Thon Notizen: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung , 1966 .