A posteriori error estimator competition for conforming obstacle problems

This article on the a posteriori error analysis of the obstacle problem with affine obstacles and Courant finite elements compares five classes of error estimates for accurate guaranteed error control. To treat interesting computational benchmarks, the first part extends the Braess methodology from 2005 of the resulting a posteriori error control to mixed inhomogeneous boundary conditions. The resulting guaranteed global upper bound involves some auxiliary partial differential equation and leads to four contributions with explicit constants. Their efficiency is examined affirmatively for five benchmark examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013

[1]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[2]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[3]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[5]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[6]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[7]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[8]  Ricardo H. Nochetto,et al.  Positivity preserving finite element approximation , 2002, Math. Comput..

[9]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[10]  Carsten Carstensen,et al.  Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.

[11]  Stefan A. Sauter,et al.  A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.

[12]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[13]  Dietrich Braess,et al.  A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.

[14]  R. Schreiber Numerical Methods for Partial Differential Equations , 1999 .

[15]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[16]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[17]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[18]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[19]  Ricardo H. Nochetto,et al.  Fully Localized A posteriori Error Estimators and Barrier Sets for Contact Problems , 2004, SIAM J. Numer. Anal..

[20]  Carsten Carstensen,et al.  All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..

[21]  W. Marsden I and J , 2012 .

[22]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[23]  S. Singh Nonlinear functional analysis and its applications , 1986 .

[24]  D. Braess,et al.  A posteriori estimators for obstacle problems by the hypercircle method , 2008 .

[25]  Chunxiao Wu,et al.  Multigrid Methods for Obstacle Problems , 2013 .

[26]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[27]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[28]  Carsten Carstensen,et al.  An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..

[29]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[30]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[31]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[32]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[33]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.

[34]  Carsten Carstensen,et al.  Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..

[35]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[36]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[37]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[38]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[39]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[40]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..