Opinion Retrieval: Searching for Opinions in Social Media

Opinion retrieval deals with discovery and retrieval of content, primarily from social media, that is relevant to the user’s information needs and contains opinions that pertain to them. It combines methodologies and approaches from two distinct areas of research: information retrieval and sentiment analysis. The former deals with the representation, storage and access to information, while the latter focuses on the detection, extraction and analysis of affective content. In this chapter, we will provide a brief but concise introduction to the area, focusing on the most relevant and influential work that has taken place in both distinct areas of research, as well as discuss how those approaches can be combined effectively and efficiently to fulfill the field’s stated goal.

[1]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[2]  Derek Greene,et al.  Using Crowdsourcing and Active Learning to Track Sentiment in Online Media , 2010, ECAI.

[3]  Craig MacDonald,et al.  Integrating Proximity to Subjective Sentences for Blog Opinion Retrieval , 2009, ECIR.

[4]  Timothy Baldwin,et al.  Lexical normalization for social media text , 2013, TIST.

[5]  J. Russell,et al.  Science Current Directions in Psychological the Structure of Current Affect : Controversies and Emerging Consensus on Behalf Of: Association for Psychological Science , 2022 .

[6]  Hung-Yu Kao,et al.  Blog Popularity Mining Using Social Interconnection Analysis , 2010, IEEE Internet Computing.

[7]  Shlomo Moran,et al.  SALSA: the stochastic approach for link-structure analysis , 2001, TOIS.

[8]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[9]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) Using WordNet to measure semantic orientations of adjectives , 2004 .

[10]  Claire Cardie,et al.  Identifying Sources of Opinions with Conditional Random Fields and Extraction Patterns , 2005, HLT.

[11]  T. Dalgleish,et al.  Handbook of cognition and emotion , 1999 .

[12]  Jingbo Zhu,et al.  Aspect-Based Opinion Polling from Customer Reviews , 2011, IEEE Transactions on Affective Computing.

[13]  Michael D. Robinson,et al.  Measures of emotion: A review , 2009, Cognition & emotion.

[14]  Craig MacDonald,et al.  Blog track research at TREC , 2010, SIGF.

[15]  Nitin Agarwal,et al.  Online Collective Action: Dynamics of the Crowd in Social Media , 2014 .

[16]  Hui Zhang,et al.  WIDIT in TREC 2006 Blog Track , 2006, TREC.

[17]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[18]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[19]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[20]  Wei Zhang,et al.  Opinion retrieval from blogs , 2007, CIKM '07.

[21]  Craig MacDonald,et al.  An effective statistical approach to blog post opinion retrieval , 2008, CIKM '08.

[22]  Arvid Kappas,et al.  Predicting Emotional Responses to Long Informal Text , 2013, IEEE Transactions on Affective Computing.

[23]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[24]  Claire Cardie,et al.  OpinionFinder: A System for Subjectivity Analysis , 2005, HLT.

[25]  James Lanagan,et al.  An Investigation of Term Weighting Approaches for Microblog Retrieval , 2012, ECIR.

[26]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[27]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[28]  Valentin Jijkoun,et al.  Generating Focused Topic-Specific Sentiment Lexicons , 2010, ACL.

[29]  Wei-Hao Lin,et al.  Which Side are You on? Identifying Perspectives at the Document and Sentence Levels , 2006, CoNLL.

[30]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[31]  D. Thalmann,et al.  Sentiment analysis of informal textual communication in cyberspace , 2010 .

[32]  Hsinchun Chen,et al.  AI and Opinion Mining , 2010, IEEE Intelligent Systems.

[33]  Ting Wang,et al.  Opinion Retrieval in Twitter , 2012, ICWSM.

[34]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[35]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[36]  Iadh Ounis,et al.  Overview of the TREC 2011 Microblog Track , 2011, TREC.

[37]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[38]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[39]  Iadh Ounis,et al.  The TREC Blogs06 Collection: Creating and Analysing a Blog Test Collection , 2006 .

[40]  Mike Thelwall,et al.  Twitter, MySpace, Digg: Unsupervised Sentiment Analysis in Social Media , 2012, TIST.

[41]  Christine D. Piatko,et al.  Using “Annotator Rationales” to Improve Machine Learning for Text Categorization , 2007, NAACL.

[42]  Mike Thelwall,et al.  Do Neighbours Help? An Exploration of Graph-based Algorithms for Cross-domain Sentiment Classification , 2012, EMNLP.

[43]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[44]  Mike Thelwall,et al.  More than Bag-of-Words: Sentence-based Document Representation for Sentiment Analysis , 2013, RANLP.

[45]  Kalina Bontcheva,et al.  Text Processing with GATE , 2011 .

[46]  Iadh Ounis,et al.  Overview of the TREC 2008 Blog Track , 2008, TREC.

[47]  Fernando Pereira,et al.  Reading the Markets: Forecasting Public Opinion of Political Candidates by News Analysis , 2008, COLING.

[48]  Eytan Adar,et al.  Implicit Structure and the Dynamics of Blogspace , 2004 .

[49]  Wolfgang Nejdl,et al.  Introduction to the special section on twitter and microblogging services , 2013, TIST.

[50]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[51]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[52]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[53]  Donald Metzler,et al.  USC/ISI at TREC 2011: Microblog Track , 2011, TREC.

[54]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[55]  Rudy Prabowo,et al.  Sentiment analysis: A combined approach , 2009, J. Informetrics.

[56]  Jong-Hyeok Lee,et al.  Improving Opinion Retrieval Based on Query-Specific Sentiment Lexicon , 2009, ECIR.

[57]  Iryna Gurevych,et al.  Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields , 2010, EMNLP.

[58]  Hsinchun Chen AI and Security Informatics , 2010, IEEE Intelligent Systems.

[59]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[60]  Grigoris Antoniou,et al.  The Semantic Web: ESWC 2011 Workshops , 2011, Lecture Notes in Computer Science.

[61]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[62]  Mohand Boughanem Information Retrieval and Social Media , 2013, Modeling Approaches and Algorithms for Advanced Computer Applications.

[63]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[64]  Soo-Min Kim,et al.  Automatic Identification of Pro and Con Reasons in Online Reviews , 2006, ACL.

[65]  Matt Thomas,et al.  Get out the vote: Determining support or opposition from Congressional floor-debate transcripts , 2006, EMNLP.

[66]  Craig MacDonald,et al.  Ranking opinionated blog posts using OpinionFinder , 2008, SIGIR '08.

[67]  Iadh Ounis,et al.  Incorporating term dependency in the dfr framework , 2007, SIGIR.

[68]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[69]  Mike Thelwall,et al.  Sentiment in short strength detection informal text , 2010 .

[70]  G. Paltoglou Sentiment Analysis in Social Media , 2014 .

[71]  Shankar Kumar,et al.  Normalization of non-standard words , 2001, Comput. Speech Lang..

[72]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[73]  Hang Li Learning to Rank for Information Retrieval and Natural Language Processing , 2011, Synthesis Lectures on Human Language Technologies.

[74]  Jingbo Zhu,et al.  Multi-aspect opinion polling from textual reviews , 2009, CIKM.

[75]  Wei Zhang,et al.  Improve the effectiveness of the opinion retrieval and opinion polarity classification , 2008, CIKM '08.

[76]  M. de Rijke,et al.  Incorporating Query Expansion and Quality Indicators in Searching Microblog Posts , 2011, ECIR.

[77]  Hsinchun Chen,et al.  Social Media Analytics and Intelligence , 2010, IEEE Intell. Syst..

[78]  Peter Ingwersen,et al.  Developing a Test Collection for the Evaluation of Integrated Search , 2010, ECIR.

[79]  Xuanjing Huang,et al.  A unified relevance model for opinion retrieval , 2009, CIKM.

[80]  Min Zhang,et al.  A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval , 2008, SIGIR '08.

[81]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[82]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[83]  Arvid Kappas,et al.  Collective Emotions Online and Their Influence on Community Life , 2011, PloS one.

[84]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[85]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[86]  Axel Bruns,et al.  Investigating the Impact of the Blogosphere: Using PageRank to Determine the Distribution of Attention , 2007 .

[87]  T. Dalgleish,et al.  Handbook of Cognition and Emotion: Dalgleish/Cognition and Emotion , 2005 .

[88]  Ziqi Wang,et al.  Retrieving opinions from discussion forums , 2013, CIKM.

[89]  Eduard H. Hovy,et al.  Structured Event Retrieval over Microblog Archives , 2012, NAACL.

[90]  Diana Maynard,et al.  Automatic Detection of Political Opinions in Tweets , 2011, #MSM.

[91]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[92]  Abdelmalek Amine,et al.  Modeling Approaches and Algorithms for Advanced Computer Applications , 2013, Studies in Computational Intelligence.

[93]  Kristian J. Hammond,et al.  Domain Specific Affective Classification of Documents , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[94]  Scott Weinstein,et al.  Centering: A Framework for Modeling the Local Coherence of Discourse , 1995, CL.

[95]  Philip J. Stone,et al.  Experiments in induction , 1966 .

[96]  Likun Qiu,et al.  SELC: a self-supervised model for sentiment classification , 2009, CIKM.

[97]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, Web Intelligence.

[98]  Kevan Buckley,et al.  Subjectivity Annotation of the Microblog 2011 Realtime Adhoc Relevance Judgments , 2013, ECIR.

[99]  Mike Thelwall,et al.  Biographies or Blenders: Which Resource Is Best for Cross-Domain Sentiment Analysis? , 2012, CICLing.

[100]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 1 , 2000, Inf. Process. Manag..

[101]  Alexander Gelbukh,et al.  Computational Linguistics and Intelligent Text Processing , 2015, Lecture Notes in Computer Science.

[102]  Weimao Ke,et al.  Fusion Approach to Finding opinions in Blogosphere , 2007, ICWSM.

[103]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[104]  Xiaojun Wan,et al.  Opinion Target Extraction in Chinese News Comments , 2010, COLING.

[105]  Rafael E. Banchs,et al.  Emotional Reactions and the Pulse of Public Opinion: Measuring the Impact of Political Events on the Sentiment of Online Discussions , 2010, ArXiv.

[106]  C. J. van Rijsbergen,et al.  Probabilistic models of information retrieval based on measuring the divergence from randomness , 2002, TOIS.

[107]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.