Nonlinear Parametric Inversion Using Interpolatory Model Reduction

Nonlinear parametric inverse problems appear in several prominent applications; one such application is diffuse optical tomography (DOT) in medical image reconstruction. Such inverse problems present huge computational challenges, mostly due to the need for solving a sequence of large-scale discretized, parametrized partial differential equations in the forward model. In this paper, we show how interpolatory parametric model reduction can significantly reduce the cost of the inversion process in DOT by drastically reducing the computational cost of solving the forward problems. The key observation is that function evaluations for the underlying optimization problem may be viewed as transfer function evaluations along the imaginary axis; a similar observation holds for Jacobian evaluations as well. This motivates the use of system-theoretic model order reduction methods. We discuss the construction and use of interpolatory parametric reduced models as surrogates for the full forward model. Within the DOT s...

[1]  M. Urner Scattered Data Approximation , 2016 .

[2]  Paul Van Dooren,et al.  Model Reduction of MIMO Systems via Tangential Interpolation , 2005, SIAM J. Matrix Anal. Appl..

[3]  Peter Benner,et al.  Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und InterpolationModel Reduction for Parametric Systems Using Balanced Truncation and Interpolation , 2009, Autom..

[4]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[5]  K. Willcox,et al.  Interpolation among reduced‐order matrices to obtain parameterized models for design, optimization and probabilistic analysis , 2009 .

[6]  Harbir Antil,et al.  Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system , 2011, Optim. Methods Softw..

[7]  V. Druskin,et al.  A model reduction approach to numerical inversion for a parabolic partial differential equation , 2012, 1210.1257.

[8]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[9]  K. T. Moesta,et al.  Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography. , 2004, Physics in medicine and biology.

[10]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[11]  Luca Daniel,et al.  Parameterized model order reduction of nonlinear dynamical systems , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[12]  S. Arridge Optical tomography in medical imaging , 1999 .

[13]  Emílio C. N. Silva,et al.  Recycling Krylov subspaces for efficient large-scale electrical impedance tomography , 2010 .

[14]  Stanley Osher,et al.  A survey on level set methods for inverse problems and optimal design , 2005, European Journal of Applied Mathematics.

[15]  Boris Lohmann,et al.  Parametric Model Order Reduction by Matrix Interpolation , 2010, Autom..

[16]  O. Dorn,et al.  Level set methods for inverse scattering , 2006 .

[17]  J. Bushberg The Essential Physics of Medical Imaging , 2001 .

[18]  Michel Nakhla,et al.  Passive parameterized time-domain macromodels for high-speed transmission-line networks , 2003 .

[19]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[20]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[21]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[22]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[23]  Peter Benner,et al.  A Robust Algorithm for Parametric Model Order Reduction Based on Implicit Moment Matching , 2014 .

[24]  Misha Elena Kilmer,et al.  A Regularized Gauss-Newton Trust Region Approach to Imaging in Diffuse Optical Tomography , 2011, SIAM J. Sci. Comput..

[25]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[26]  Serkan Gugercin,et al.  Interpolatory Model Reduction of Large-Scale Dynamical Systems , 2010 .

[27]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[28]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[29]  Gui-rong Liu,et al.  Computational Inverse Techniques in Nondestructive Evaluation , 2003 .

[30]  N. Sun Inverse problems in groundwater modeling , 1994 .

[31]  B. Haasdonk,et al.  Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition , 2011 .

[32]  Jacob K. White,et al.  A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[33]  Serkan Gugercin,et al.  Inexact solves in interpolatory model reduction , 2010, 1007.5213.

[34]  Valeria Simoncini,et al.  Solution of the Time-Domain Inverse Resistivity Problem in the Model Reduction Framework Part I. One-Dimensional Problem with SISO Data , 2013, SIAM J. Sci. Comput..

[35]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[36]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[37]  A. Hay,et al.  Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition , 2009, Journal of Fluid Mechanics.

[38]  Karen Willcox,et al.  Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications , 2007 .

[39]  Harbir Antil,et al.  Reduced order modeling based shape optimization of surface acoustic wave driven microfluidic biochips , 2012, Math. Comput. Simul..

[40]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[41]  J. Peraire,et al.  A ‘best points’ interpolation method for efficient approximation of parametrized functions , 2008 .

[42]  Uri M. Ascher,et al.  On level set regularization for highly ill-posed distributed parameter estimation problems , 2006, J. Comput. Phys..

[43]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[44]  Karen Willcox,et al.  A Survey of Model Reduction Methods for Parametric Systems ∗ , 2013 .

[45]  B. Tromberg,et al.  Spatial variations in optical and physiological properties of healthy breast tissue. , 2002, Journal of biomedical optics.

[46]  R. Snieder Inverse Problems in Geophysics , 2001 .

[47]  Charbel Farhat,et al.  An Online Method for Interpolating Linear Parametric Reduced-Order Models , 2011, SIAM J. Sci. Comput..

[48]  Karl Meerbergen,et al.  Accelerating Optimization of Parametric Linear Systems by Model Order Reduction , 2013, SIAM J. Optim..

[49]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[50]  Zhi-pei Liang,et al.  Introduction to biomedical imaging , 2008 .

[51]  U. Ascher,et al.  Dynamic level set regularization for large distributed parameter estimation problems , 2007 .

[52]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[53]  Georgios E. Stavroulakis,et al.  Inverse and Crack Identification Problems in Engineering Mechanics , 2013 .

[54]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[55]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[56]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[57]  M. A. O'Leary,et al.  Imaging with diffuse photon density waves , 1996 .

[58]  Charbel Farhat,et al.  An Interpolation Method for the Adaptation of Reduced-Order Models to Parameter Changes and Its Application to Aeroelasticity , 2007 .

[59]  Wendy D. Graham,et al.  Optimal estimation of residual non–aqueous phase liquid saturations using partitioning tracer concentration data , 1997 .

[60]  K. T. Moesta,et al.  Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients , 2005, Physics in medicine and biology.

[61]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[62]  Alfred K. Louis,et al.  Medical imaging: state of the art and future development , 1992 .

[63]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[64]  René Marklein,et al.  Linear and nonlinear inversion algorithms applied in nondestructive evaluation , 2002 .

[65]  Eric L. Miller,et al.  Parametric Level Set Methods for Inverse Problems , 2010, SIAM J. Imaging Sci..

[66]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[67]  Uri M. Ascher,et al.  Multiple Level Sets for Piecewise Constant Surface Reconstruction in Highly Ill-Posed Problems , 2010, J. Sci. Comput..