Descriptions and Challenges of AFM Based Nanorobotic Systems

Nanorobotics means literally the study of robots that are nanoscale in typical size, i.e. nanorobots,which have yet to be realized. Generally, nanorobots are large robots capable of manipulation nanoscale objects with nanometer resolution, e.g. a AFMbased nanorobotic manipulation system and a scanning electron microscope (SEM) equipped with a nanomanipulator.When studying nanorobotics, we first have to understand physics that underlies interactions at the nanoscale. At microscale, some basic micromanipulation problems attributed to the scale affects have been identified. We have seen how the surface effects, instead of volume effects, dominate the physical phenomena at this scale. Most of these scaling laws are still available at the nanoscale. However, the scale affects become more severe at the nanoscale due to the additional three orders of magnitude in size reduction, and it becomes much more difficult to predict and control because of more scale effects and uncertainties introduced when the nanomanipulation performed in the nanoworld.

[1]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[2]  E. Garfunkel,et al.  A novel AFM/STM/SEM system , 1994 .

[3]  B. Schleicher,et al.  Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy , 1998 .

[4]  Sitti Metin Teleoperated 2-D Micro/Nanomanipulation Using Atomic Force Microscope , 1999 .

[5]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[6]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[7]  Madhukar,et al.  Manipulation of gold nanoparticles in liquid environments using scanning force microscopy , 2000, Ultramicroscopy.

[8]  Fumihito Arai,et al.  Electron-beam-induced deposition with carbon nanotube emitters , 2002 .

[9]  Fumihito Arai,et al.  Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations , 2003, Proc. IEEE.

[10]  Metin Sitti,et al.  Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments , 2003 .

[11]  C. Murphy,et al.  Nanoindentation of Silver Nanowires , 2003 .

[12]  Yuyuan Tian,et al.  Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions , 2003, Science.

[13]  F. Arai,et al.  Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation , 2004, IEEE/ASME Transactions on Mechatronics.

[14]  Ning Xi,et al.  Development of augmented reality system for AFM-based nanomanipulation , 2004 .

[15]  M. Sitti Atomic force microscope probe based controlled pushing for nanotribological characterization , 2004, IEEE/ASME Transactions on Mechatronics.

[16]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.

[17]  Jean-Marc Breguet,et al.  Nanomanipulation in a scanning electron microscope , 2005 .

[18]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[19]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[20]  Guangyong Li,et al.  "Videolized" atomic force microscopy for interactive nanomanipulation and nanoassembly , 2005, IEEE Transactions on Nanotechnology.

[21]  M. Sitti,et al.  Augmented reality user interface for an atomic force microscope-based nanorobotic system , 2006, IEEE Transactions on Nanotechnology.

[22]  Metin Sitti,et al.  Task-based and stable telenanomanipulation in a nanoscale virtual environment , 2006, IEEE Transactions on Automation Science and Engineering.

[23]  K. Mølhave,et al.  Pick-and-place nanomanipulation using microfabricated grippers , 2006, Nanotechnology.

[24]  Xiaodong Li,et al.  Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques , 2006, Nanotechnology.

[25]  Robert C. Davis,et al.  Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate. , 2006, Nano letters.

[26]  F. Arai,et al.  In situ measurement of Young's modulus of carbon nanotubes inside a TEM through a hybrid nanorobotic manipulation system , 2006, IEEE Transactions on Nanotechnology.

[27]  Aristides A. G. Requicha,et al.  Drift compensation for automatic nanomanipulation with scanning probe microscopes , 2006, IEEE Transactions on Automation Science and Engineering.

[28]  C. Joachim,et al.  Exploring the interatomic forces between tip and single molecules during STM manipulation. , 2006, Nano letters.

[29]  Li Zhang,et al.  Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. , 2007, Nano letters.

[30]  Ludwig Josef Balk,et al.  Acoustic near-field conditions in an ESEM/AFM hybrid system , 2007 .

[31]  Lars Montelius,et al.  Shear stress measurements on InAs nanowires by AFM manipulation. , 2007, Small.

[32]  Harald Fuchs,et al.  Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques , 2007 .

[33]  J. Lyding,et al.  Lateral manipulation of single-walled carbon nanotubes on H-passivated Si(100) surfaces with an ultrahigh-vacuum scanning tunneling microscope. , 2007, Small.

[34]  Aristides A. G. Requicha,et al.  Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.

[35]  E. McFarland,et al.  Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). , 2008, Langmuir : the ACS journal of surfaces and colloids.

[36]  B. Bhushan,et al.  A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments , 2008, Nanotechnology.

[37]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[38]  K. Mølhave,et al.  Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation , 2009, IEEE Transactions on Nanotechnology.

[39]  Håkan Pettersson,et al.  Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. , 2008, Small.

[40]  Sergej Fatikow,et al.  Towards Automated Nanoassembly With the Atomic Force Microscope: A Versatile Drift Compensation Procedure , 2009 .

[41]  C. H. Devillers,et al.  Manipulation of cadmium selenide nanorods with an atomic force microscope , 2009, Nanotechnology.

[42]  M. Rakotondrabe,et al.  Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. , 2009, The Review of scientific instruments.

[43]  Hui Xie,et al.  A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly , 2009, Nanotechnology.

[44]  Suenne Kim,et al.  Atomic force microscope nanomanipulation with simultaneous visual guidance. , 2009, ACS nano.

[45]  Gabriel Gomila,et al.  Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces , 2010 .

[46]  K. A. Brown,et al.  Coaxial Atomic Force Microscope Tweezers , 2010, 1001.5262.

[47]  Hui Xie,et al.  High-Efficiency Automated Nanomanipulation With Parallel Imaging/Manipulation Force Microscopy , 2012 .