Convolution particle filtering for parameter estimation in general state-space models
暂无分享,去创建一个
[1] N. Gordon. A hybrid bootstrap filter for target tracking in clutter , 1997 .
[2] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[3] M. West. Approximating posterior distributions by mixtures , 1993 .
[4] Arnaud Doucet,et al. A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..
[5] James Ting-Ho Lo,et al. Synthetic approach to optimal filtering , 1994, IEEE Trans. Neural Networks.
[6] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[7] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[8] G. Kitagawa. Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .
[9] T. Brehard,et al. Hierarchical particle filter for bearings-only tracking , 2007, IEEE Transactions on Aerospace and Electronic Systems.
[10] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[11] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[12] Paul I. Nelson,et al. On Conditional Least Squares Estimation for Stochastic Processes , 1978 .
[13] Laurent Miclo,et al. A Moran particle system approximation of Feynman-Kac formulae , 2000 .
[14] Jean-Pierre Vila,et al. Nonlinear filtering in discrete time : A particle convolution approach , 2006 .
[15] T. Higuchi. Monte carlo filter using the genetic algorithm operators , 1997 .
[16] Christian Musso,et al. Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[17] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[18] L. Mevel,et al. Recursive maximum likelihood estimation for structural health monitoring: tangent filter implementations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[19] V. Aidala,et al. Utilization of modified polar coordinates for bearings-only tracking , 1983 .
[20] Charles J. Geyer,et al. Estimation and Optimization of Functions , 1996 .
[21] Hans R. Künsch,et al. Approximating and Maximising the Likelihood for a General State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.
[22] Pierre Del Moral,et al. Feynman-Kac formulae , 2004 .
[23] H. Tong. Non-linear time series. A dynamical system approach , 1990 .
[24] P. Protter,et al. The Monte-Carlo method for filtering with discrete-time observations , 2001 .
[25] Branko Ristic,et al. Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters , 2004, EURASIP J. Adv. Signal Process..
[26] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[27] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[28] Pierre Del Moral. Feynman-Kac and Interacting Particle Recipes , 2004 .
[29] M. Schervish. Theory of Statistics , 1995 .
[30] G. Storvik. Particle filters in state space models with the presence of unknown static parameters YYYY No org found YYY , 2000 .
[31] F. LeGland,et al. A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals , 2003 .
[32] Dominic S. Lee,et al. A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..
[33] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[34] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.