Finding the atomic configuration with a required physical property in multi-atom structures

In many problems in molecular and solid state structures one seeks to determine the energy-minimizing decoration of sites with different atom types. In other problems, one is interested in finding a decoration with a target physical property (e.g. alloy band gap) within a certain range. In both cases, the sheer size of the configurational space can be horrendous. We present two approaches which identify either the minimum-energy configuration or configurations with a target property for a fixed underlying Bravais lattice. We compare their efficiency at locating the deepest minimum energy configuration of face centered cubic Au-Pd alloy. We show that a global-search genetic-algorithm approach with diversity-enhancing constraints and reciprocal-space mating can efficiently find the global optimum, whereas the local-search virtual-atom approach presented here is more efficient at finding structures with a target property.

[1]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[2]  L. Nordheim Zur Elektronentheorie der Metalle. II , 1931 .

[3]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[4]  D. Fontaine,et al.  On the Cu-Pd phase diagram , 1991 .

[5]  Exploring the configurational space of binary alloys: Different sampling for different cell shapes , 2006 .

[6]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[7]  Alex Zunger,et al.  Searching for alloy configurations with target physical properties: impurity design via a genetic algorithm inverse band structure approach. , 2006, Physical review letters.

[8]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[9]  Vincent H. Crespi,et al.  Predictions of new crystalline states for assemblies of nanoparticles: Perovskite analogues and 3-d arrays of self-assembled nanowires , 2003 .

[10]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[11]  Sorin Istrail,et al.  Statistical Mechanics, Three-Dimensionality and NP-Completeness: I. Universality of Intractability of the Partition Functions of the Ising Model Across Non-Planar Lattices , 2000, STOC 2000.

[12]  菊池 潮美 "Order and Phase Stability in Alloys", F. Ducastelle(著), F. R. de Boer, D. G. Pettifor(編), (Cohesion and Structure Vol. 3), 1991年, North-Holland発行, 23×15.5cm, 511ページ, US$ 151.50/Dfl. 295.00 , 1992 .

[13]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[14]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[15]  J. Kanamori,et al.  CONDITIONS FOR THE EXISTENCE OF ORDERED STRUCTURE IN BINARY ALLOY SYSTEMS , 1977 .

[16]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[17]  Stefano de Gironcoli,et al.  Structure and thermodynamics of SixGe1-x alloys from ab initio Monte Carlo simulations. , 1991, Physical review letters.

[18]  V. Heine,et al.  A theory of the origin of silicon carbide polytypes , 1989 .

[19]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[20]  Chris J Pickard,et al.  High-pressure phases of silane. , 2006, Physical review letters.

[21]  Weitao Yang,et al.  Designing molecules by optimizing potentials. , 2006, Journal of the American Chemical Society.

[22]  Alex Zunger,et al.  The inverse band-structure problem of finding an atomic configuration with given electronic properties , 1999, Nature.

[23]  Alex Zunger,et al.  Prediction of unusual stable ordered structures of Au-Pd alloys via a first-principles cluster expansion , 2006 .

[24]  Shahar Keinan,et al.  Designing molecules with optimal properties using the linear combination of atomic potentials approach in an AM1 semiempirical framework. , 2007, The journal of physical chemistry. A.

[25]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[26]  A. Zunger,et al.  First-principles combinatorial design of transition temperatures in multicomponent systems: the case of Mn in GaAs. , 2006, Physical review letters.

[27]  Alex Zunger,et al.  Band‐gap narrowing in ordered and disordered semiconductor alloys , 1990 .

[28]  Alex Zunger,et al.  Stability, Electronic Structure, and Phase Diagrams of Novel Inter- Semiconductor Compounds , 1991, Int. J. High Perform. Comput. Appl..