On the stability of a triplet of scoring rules

When choosing a voting rule to make subsequent decisions, the members of a committee may wish this rule to be self-selected when it is the object of a choice among a menu of different possible voting rules. Such concepts have recently been explored in Social Choice theory, and a menu of voting rule is said to be stable if it contains at least one self-selective voting rule at each profile of preferences on voting rules. We consider in this article the menu constituted by the three well-known scoring rules {Borda, Plurality, and Antiplurality}. Under the Impartial Culture assumption, which proposes an a priori model to estimate the likelihood of the profiles, we will derive a probability for the stability of this triplet of voting rules.

[1]  Donald G. Saari,et al.  The likelihood of dubious election outcomes , 1999 .

[2]  N. Schofield The Geometry of Voting , 1983 .

[3]  W. Gehrlein Condorcet's paradox , 1983 .

[4]  Scoring rule sensitivity to weight selection , 1983 .

[5]  Dominique Lepelley,et al.  The probability of conflicts in a U.S. presidential type election , 2004 .

[6]  Fabrice Valognes,et al.  On the probability that all decision rules select the same winner , 2000 .

[7]  Semih Koray,et al.  Characterization of self-selective social choice functions on the tops-only domain , 2003, Soc. Choice Welf..

[8]  D. Saari Basic Geometry of Voting , 1995 .

[9]  Thierry Marchant The probability of ties with scoring methods: Some results , 2001, Soc. Choice Welf..

[10]  Vincent Merlin L'agregation des preferences individuelles : les regles positionnelles iteratives et la methode de copeland , 1996 .

[11]  Salvador Barberà,et al.  Self-Selection Consistent Choices , 1999 .

[12]  Semih Koray,et al.  Self‐Selective Social Choice Functions Verify Arrow and Gibbard‐Satterthwaite Theorems , 2000 .

[13]  W. Gehrlein Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences* , 2002 .

[14]  Salvador Barberà,et al.  Centre de Referència en Economia Analítica Barcelona Economics Working Paper Series Working Paper n o 57 Choosing How to Choose : Self-Stable Majority Rules and Constitutions , 2004 .

[15]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[16]  J. Milnor Hyperbolic geometry: The first 150 years , 1982 .

[17]  Sven Berg,et al.  On probability models in voting theory , 1994 .

[18]  Nicolas Houy De la stabilité des procédures et constitutions en théorie du choix social , 2005 .

[19]  Vincent Merlin,et al.  On the relationship of the Condorcet winner and positional voting rules , 1997 .

[20]  Salvador Barberà,et al.  Self-Selection Consistent Functions , 2002, J. Econ. Theory.

[21]  Georges-Théodule Guilbaud Les théories de l'intérêt général et le problème logique de l'agrégation , 2012 .

[22]  Fabrice Valognes,et al.  The impact of indifferent voters on the likelihood of some voting paradoxes , 2004, Math. Soc. Sci..

[23]  Fabrice Valognes,et al.  On the likelihood of Condorcet's profiles , 2002, Soc. Choice Welf..

[24]  Ruth Kellerhals,et al.  On the volume of hyperbolic polyhedra , 1989 .

[25]  William V. Gehrlein,et al.  Condorcet efficiency: A preference for indifference , 2001, Soc. Choice Welf..

[26]  Nicolas Houy,et al.  A note on the impossibility of a set of constitutions stable at different levels , 2004 .