Neumann Series in GMRES and Algebraic Multigrid Smoothers

Neumann series underlie both Krylov methods and algebraic multigrid smoothers. A low-synchronization modified Gram-Schmidt (MGS)-GMRES algorithm is described that employs a Neumann series to accelerate the projection step. A corollary to the backward stability result of Paige et al. [1] demonstrates that the truncated Neumann series approximation is sufficient for convergence of GMRES under standard conditions. The lower triangular solver associated with the correction matrix Tm = ( I +Lm )−1 may then be replaced by a matrix-vector product with Tm = I−Lm. Next, Neumann series are applied to accelerate the classical Rüge-Stuben algebraic multigrid (AMG) preconditioner using either a polynomial Gauss-Seidel or incomplete ILU smoother. Here, the sparse triangular solver employed in the Gauss-Seidel and ILU smoothers is replaced by an inner iteration based upon matrix-vector products. Henrici’s departure from normality of the associated iteration matrices leads to a better understanding of these series. Additionally, connections are made between the (non)normality of the L and U factors and nonlinear stability analysis, as well as the pseudospectra of the coefficient matrix. Furthermore, re-orderings that preserve structural symmetry also reduce the departure from normality of the upper triangular factor and improve the relative residual of the triangular solves. To demonstrate the effectiveness of this approach on many-core architectures, the proposed solver and preconditioner are applied to the pressure continuity equation for the incompressible Navier-Stokes equations of fluid motion. The pressure solve time is reduced considerably without a change in the convergence rate and the polynomial Gauss-Seidel smoother is compared with a Jacobi smoother. Numerical and timing results are presented for Nalu-Wind and the PeleLM combustion codes, where ILU with iterative triangular solvers is shown to be much more effective than polynomial Gauss-Seidel.

[1]  P. Henrici Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .

[2]  Ulrike Meier Yang,et al.  On long‐range interpolation operators for aggressive coarsening , 2009, Numer. Linear Algebra Appl..

[3]  P. E. Bernatz,et al.  How conservative? , 1971, The Annals of thoracic surgery.

[4]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..

[5]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[6]  Bora Uçar,et al.  A Symmetry Preserving Algorithm for Matrix Scaling , 2014, SIAM J. Matrix Anal. Appl..

[7]  Timoteo Carletti,et al.  Structure and dynamical behaviour of non-normal networks. , 2018, 1803.11542.

[8]  Miroslav Rozlozník,et al.  An overview of block Gram-Schmidt methods and their stability properties , 2020, ArXiv.

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[11]  Andrew Nonaka,et al.  A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I: Single-level integration , 2018 .

[12]  Edmond Chow,et al.  ParILUT - A Parallel Threshold ILU for GPUs , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[13]  L. Elsner,et al.  On measures of nonnormality of matrices , 1987 .

[14]  Julien Langou,et al.  Low-Synch Gram-Schmidt with Delayed Reorthogonalization for Krylov Solvers , 2021, ArXiv.

[15]  Axel Ruhe Numerical aspects of gram-schmidt orthogonalization of vectors , 1983 .

[16]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[17]  Ilse C. F. Ipsen A note on the field of values of non-normal matrices , 1998 .

[18]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[19]  Edmond Chow,et al.  Iterative Sparse Triangular Solves for Preconditioning , 2015, Euro-Par.

[20]  Miroslav Rozlozník,et al.  Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..

[21]  Shreyas Ananthan,et al.  Preparing an incompressible-flow fluid dynamics code for exascale-class wind energy simulations , 2021, SC.

[22]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[23]  Robert D. Falgout,et al.  The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners , 2006 .

[24]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[25]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[26]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[27]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[28]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[29]  Paul Mullowney,et al.  ILU Smoothers for AMG with Scaled Triangular Factors , 2022 .

[30]  Shreyas Ananthan,et al.  Low synchronization Gram–Schmidt and generalized minimal residual algorithms , 2020, Numer. Linear Algebra Appl..

[31]  Robert D. Falgout,et al.  Porting hypre to heterogeneous computer architectures: Strategies and experiences , 2021, Parallel Comput..

[32]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[33]  Zdenek Strakos,et al.  Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods , 2001, SIAM J. Sci. Comput..

[34]  Thomas A. Manteuffel,et al.  Operator‐based interpolation for bootstrap algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[35]  Shreyas Ananthan,et al.  Overset meshes for incompressible flows: On preserving accuracy of underlying discretizations , 2020, J. Comput. Phys..

[36]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[37]  M. Rozložník Numerics of Gram-Schmidt orthogonalization , 2007 .

[38]  Edmond Chow,et al.  Fine-Grained Parallel Incomplete LU Factorization , 2015, SIAM J. Sci. Comput..

[39]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[40]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[41]  Eric de Sturler,et al.  Preconditioning Parametrized Linear Systems , 2016, SIAM J. Sci. Comput..

[42]  Ulrike Meier Yang,et al.  A New Class of AMG Interpolation Methods Based on Matrix-Matrix Multiplications , 2021, SIAM J. Sci. Comput..

[43]  D. Bartuschat Algebraic Multigrid , 2007 .

[44]  Hans De Sterck,et al.  Distance‐two interpolation for parallel algebraic multigrid , 2007, Numer. Linear Algebra Appl..

[45]  Ulrike Meier Yang,et al.  Parallel Algebraic Multigrid Methods — High Performance Preconditioners , 2006 .

[46]  J. L. Rigal,et al.  On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.