暂无分享,去创建一个
Ruipeng Li | Paul Mullowney | Stephen J. Thomas | Stephen Thomas | Arielle Carr | Kasia 'Swirydowicz | Ruipeng Li | P. Mullowney | K. Swirydowicz | Arielle Carr | Arielle K. Carr
[1] P. Henrici. Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .
[2] Ulrike Meier Yang,et al. On long‐range interpolation operators for aggressive coarsening , 2009, Numer. Linear Algebra Appl..
[3] P. E. Bernatz,et al. How conservative? , 1971, The Annals of thoracic surgery.
[4] Robert D. Falgout,et al. Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..
[5] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[6] Bora Uçar,et al. A Symmetry Preserving Algorithm for Matrix Scaling , 2014, SIAM J. Matrix Anal. Appl..
[7] Timoteo Carletti,et al. Structure and dynamical behaviour of non-normal networks. , 2018, 1803.11542.
[8] Miroslav Rozlozník,et al. An overview of block Gram-Schmidt methods and their stability properties , 2020, ArXiv.
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] P. Alam. ‘S’ , 2021, Composites Engineering: An A–Z Guide.
[11] Andrew Nonaka,et al. A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I: Single-level integration , 2018 .
[12] Edmond Chow,et al. ParILUT - A Parallel Threshold ILU for GPUs , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[13] L. Elsner,et al. On measures of nonnormality of matrices , 1987 .
[14] Julien Langou,et al. Low-Synch Gram-Schmidt with Delayed Reorthogonalization for Krylov Solvers , 2021, ArXiv.
[15] Axel Ruhe. Numerical aspects of gram-schmidt orthogonalization of vectors , 1983 .
[16] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[17] Ilse C. F. Ipsen. A note on the field of values of non-normal matrices , 1998 .
[18] K. Stuben,et al. Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .
[19] Edmond Chow,et al. Iterative Sparse Triangular Solves for Preconditioning , 2015, Euro-Par.
[20] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[21] Shreyas Ananthan,et al. Preparing an incompressible-flow fluid dynamics code for exascale-class wind energy simulations , 2021, SC.
[22] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[23] Robert D. Falgout,et al. The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners , 2006 .
[24] Y. Saad,et al. Experimental study of ILU preconditioners for indefinite matrices , 1997 .
[25] Alan George,et al. Computer Solution of Large Sparse Positive Definite , 1981 .
[26] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[27] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[28] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[29] Paul Mullowney,et al. ILU Smoothers for AMG with Scaled Triangular Factors , 2022 .
[30] Shreyas Ananthan,et al. Low synchronization Gram–Schmidt and generalized minimal residual algorithms , 2020, Numer. Linear Algebra Appl..
[31] Robert D. Falgout,et al. Porting hypre to heterogeneous computer architectures: Strategies and experiences , 2021, Parallel Comput..
[32] Michael Luby,et al. A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.
[33] Zdenek Strakos,et al. Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods , 2001, SIAM J. Sci. Comput..
[34] Thomas A. Manteuffel,et al. Operator‐based interpolation for bootstrap algebraic multigrid , 2010, Numer. Linear Algebra Appl..
[35] Shreyas Ananthan,et al. Overset meshes for incompressible flows: On preserving accuracy of underlying discretizations , 2020, J. Comput. Phys..
[36] Hans De Sterck,et al. Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..
[37] M. Rozložník. Numerics of Gram-Schmidt orthogonalization , 2007 .
[38] Edmond Chow,et al. Fine-Grained Parallel Incomplete LU Factorization , 2015, SIAM J. Sci. Comput..
[39] Michael Eiermann,et al. Fields of values and iterative methods , 1993 .
[40] P. Alam. ‘E’ , 2021, Composites Engineering: An A–Z Guide.
[41] Eric de Sturler,et al. Preconditioning Parametrized Linear Systems , 2016, SIAM J. Sci. Comput..
[42] Ulrike Meier Yang,et al. A New Class of AMG Interpolation Methods Based on Matrix-Matrix Multiplications , 2021, SIAM J. Sci. Comput..
[43] D. Bartuschat. Algebraic Multigrid , 2007 .
[44] Hans De Sterck,et al. Distance‐two interpolation for parallel algebraic multigrid , 2007, Numer. Linear Algebra Appl..
[45] Ulrike Meier Yang,et al. Parallel Algebraic Multigrid Methods — High Performance Preconditioners , 2006 .
[46] J. L. Rigal,et al. On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.