Spectral compression of single photons

Researchers demonstrate bandwidth compression of single photons from 1740 GHz to 43 GHz, and tuning the center wavelength from 379 nm to 402 nm. The scheme relies on sum-frequency generation with frequency-chirped laser pulses. This technique enables interfacing between different quantum systems whose absorption and emission spectral properties are mismatched.

[1]  M. Horodecki,et al.  Quantum α-entropy inequalities: independent condition for local realism? , 1996 .

[2]  O. Alibart,et al.  A photonic quantum information interface , 2005, Nature.

[3]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[4]  I. Ross,et al.  Efficient tuneable bandwidth frequency mixing using chirped pulses , 1999 .

[5]  C J McKinstrie,et al.  Quantum frequency translation of single-photon states in a photonic crystal fiber. , 2010, Physical review letters.

[6]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[7]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[8]  Anton Zeilinger,et al.  Polarization-entanglement-conserving frequency conversion of photons , 2011, 1106.1867.

[9]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[10]  A. Zeilinger,et al.  Discrete, tunable color-entanglement , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[11]  Lijun Ma,et al.  Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot. , 2011, Physical review letters.

[12]  M. Teich,et al.  Quantum-optical coherence tomography with dispersion cancellation , 2001, quant-ph/0111140.

[13]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena , 1996 .

[14]  P. Lam,et al.  High efficiency coherent optical memory with warm rubidium vapour , 2010, Nature communications.

[15]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[16]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[17]  P. Zoller,et al.  Hybrid quantum devices and quantum engineering , 2009, 0911.3835.

[18]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[19]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[20]  Silvia Carrasco,et al.  Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. , 2008, Physical review letters.

[21]  Christine Silberhorn,et al.  A quantum pulse gate based on spectrally engineered sum frequency generation. , 2010, Optics express.

[22]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[23]  V Malka,et al.  Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses. , 1998, Optics letters.

[24]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  R. Danielius,et al.  Generation of narrow-bandwidth tunable picosecond pulses by difference-frequency mixing of stretched pulses , 1999 .

[26]  Kumar,et al.  Observation of quantum frequency conversion. , 1992, Physical review letters.

[27]  H M Wiseman,et al.  Quantum optical waveform conversion. , 2010, Physical review letters.

[28]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[29]  I. Walmsley,et al.  Towards high-speed optical quantum memories , 2009, 0912.2970.

[30]  A. Kuzmich,et al.  Entanglement of light-shift compensated atomic spin waves with telecom light. , 2010, Physical review letters.

[31]  Nonlocal dispersion cancellation using entangled photons , 2009 .

[32]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[33]  Paul G. Kwiat,et al.  High efficiency single photon detection via frequency up-conversion , 2004 .

[34]  C R Phillips,et al.  Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. , 2011, Optics express.