SHREC’16 Track: Partial Shape Queries for 3D Object Retrieval

Despite numerous recent efforts, 3D object retrieval based on partial shape queries remains a challenging problem, far from being solved. The problem can be defined as: given a partial view of a shape as query, retrieve all partially similar 3D models from a repository. The objective of this track is to evaluate the performance of partial 3D object retrieval methods, for partial shape queries of various scan qualities and degrees of partiality. The retrieval problem is often found in cultural heritage applications, for which partial scans of objects query a dataset of geometrically distinct classes.

[1]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[2]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[4]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[6]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[7]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[8]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Ryutarou Ohbuchi,et al.  Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features , 2009, CIVR '09.

[10]  Petros Daras,et al.  SHREC'09 Track: Querying with Partial Models , 2009, 3DOR@Eurographics.

[11]  Mohamed Daoudi,et al.  Partial 3D Shape Retrieval by Reeb Pattern Unfolding , 2009, Comput. Graph. Forum.

[12]  Yu Zhong,et al.  Intrinsic shape signatures: A shape descriptor for 3D object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[13]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[14]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[16]  Ioannis Pratikakis,et al.  3D articulated object retrieval using a graph-based representation , 2010, The Visual Computer.

[17]  Michael G. Strintzis,et al.  3-D Model Search and Retrieval From Range Images Using Salient Features , 2010, IEEE Transactions on Multimedia.

[18]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[19]  Ryutarou Ohbuchi,et al.  SHREC'10 Track: Range Scan Retrieval , 2010, 3DOR@Eurographics.

[20]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[21]  Antonio Adán,et al.  3D scene retrieval and recognition with Depth Gradient Images , 2011, Pattern Recognit. Lett..

[22]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[23]  Guillaume Lavoué,et al.  Combination of bag-of-words descriptors for robust partial shape retrieval , 2012, The Visual Computer.

[24]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Tobias Schreck,et al.  SHREC'13 Track: Large-Scale Partial Shape Retrieval Using Simulated Range Images , 2013, 3DOR@Eurographics.

[26]  Shin'ichi Satoh,et al.  Query-Adaptive Asymmetrical Dissimilarities for Visual Object Retrieval , 2013, 2013 IEEE International Conference on Computer Vision.

[27]  Afzal Godil,et al.  CM-BOF: visual similarity-based 3D shape retrieval using Clock Matching and Bag-of-Features , 2013, Machine Vision and Applications.

[28]  Bo Li,et al.  Hybrid shape descriptor and meta similarity generation for non-rigid and partial 3D model retrieval , 2014, Multimedia Tools and Applications.

[29]  Mohammed Bennamoun,et al.  Rotational Projection Statistics for 3D Local Surface Description and Object Recognition , 2013, International Journal of Computer Vision.

[30]  Michalis A. Savelonas,et al.  An overview of partial 3D object retrieval methodologies , 2015, Multimedia Tools and Applications.

[31]  Anestis Koutsoudis,et al.  Partial matching of 3D cultural heritage objects using panoramic views , 2016, Multimedia Tools and Applications.

[32]  Rita Cucchiara,et al.  GOLD: Gaussians of Local Descriptors for image representation , 2015, Comput. Vis. Image Underst..

[33]  Michalis A. Savelonas,et al.  Fisher encoding of differential fast point feature histograms for partial 3D object retrieval , 2016, Pattern Recognit..