Uncertainty Management Using Sequential Parameter Optimization

Sequential Parameter Optimization (SPO) is a meta-model based search heuristic that combines classical and modern statistical techniques. It was originally developed for the analysis of search heuristics such as simulated annealing, particle swarm optimization and evolutionary algorithms [6]. Here, SPO itself will be used as a search heuristic, i.e., SPO is applied to the objective function directly. An introduction to the state-of-the-art R implementation of SPO, the so-called sequential parameter optimization toolbox (SPOT), is presented in [5].

[1]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[2]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[3]  Hans-Georg Beyer,et al.  A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..

[4]  Douglas W. Nychka,et al.  Tools for Spatial Data , 2016 .

[5]  Andy J. Keane,et al.  Combustor Design Optimization Using Co-Kriging of Steady and Unsteady Turbulent Combustion , 2011 .

[6]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[7]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[8]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[9]  Chun-Hung Chen,et al.  Optimal Computing Budget Allocation of Indifference-zone-selection Procedures , 2003 .

[10]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[11]  Christian W. G. Lasarczyk,et al.  Genetische Programmierung einer algorithmischen Chemie , 2008 .

[12]  Thomas Bartz-Beielstein,et al.  The Sequential Parameter Optimization Toolbox , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[13]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[14]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[15]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[16]  Karin S. Dorman,et al.  mlegp: statistical analysis for computer models of biological systems using R , 2008, Bioinform..

[17]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[18]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[20]  Thomas Bartz-Beielstein,et al.  the future of experimental research , 2009, GECCO '09.

[21]  Thomas Bartz-Beielstein,et al.  Noisy optimization with sequential parameter optimization and optimal computational budget allocation , 2011, GECCO.

[22]  T. Kikuma,et al.  Heavy width reduction rolling of slabs , 1983 .

[23]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[24]  Loo Hay Lee,et al.  Introduction to Stochastic Simulation Optimization , 2010 .

[25]  Russell R. Barton,et al.  Chapter 18 Metamodel-Based Simulation Optimization , 2006, Simulation.

[26]  Peter Stagge,et al.  Averaging Efficiently in the Presence of Noise , 1998, PPSN.

[27]  J. Tukey The Philosophy of Multiple Comparisons , 1991 .

[28]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[29]  Chun-Hung Chen,et al.  New development of optimal computing budget allocation for discrete event simulation , 1997, WSC '97.

[30]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[31]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[32]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[33]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[34]  Jack P. C. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[35]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.