A Continuous Adjoint Approach to Shape Optimization for Navier Stokes Flow

In this paper we present an approach to shape optimization which is based on continuous adjoint computations. If the exact discrete adjoint equation is used, the resulting formula yields the exact discrete reduced gradient. We first introduce the adjoint-based shape derivative computation in a Banach space setting. This method is then applied to the instationary Navier-Stokes equations. Finally, we give some numerical results.

[1]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[2]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[3]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[4]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[5]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[6]  Jacques Simon,et al.  Etude de Problème d'Optimal Design , 1975, Optimization Techniques.

[7]  Johan Hoffman,et al.  Adaptive finite element methods for incompressible fluid flow , 2001 .

[8]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[9]  Mohamed Masmoudi,et al.  Computation of high order derivatives in optimal shape design , 1994 .

[10]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[11]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[12]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[13]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[14]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[15]  W. Ziemer Weakly differentiable functions , 1989 .

[16]  Kyung K. Choi,et al.  Structural Sensitivity Analysis and Optimization 1: Linear Systems , 2005 .

[17]  Johan Hoffman,et al.  A new approach to computational turbulence modeling , 2006 .

[18]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[19]  D. Preiss,et al.  WEAKLY DIFFERENTIABLE FUNCTIONS (Graduate Texts in Mathematics 120) , 1991 .

[20]  Michael Ulbrich,et al.  Constrained optimal control of Navier-Stokes flow by semismooth Newton methods , 2003, Syst. Control. Lett..

[21]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..