Nodulation response of autoregulated or NH4+‐inhibited pea (Pisum sativum) after transfer to stimulatory (low) concentrations of NH4+

It has been demonstrated previously that field pea (Pisum sativum L. cv. Express) grown in hydroponic culture on a complete nutrient solution with low NH4+ concentrations (<0.5 mM) will produce a larger than normal proliferation of nodules. Peas grown in the absence of mineral N in hydroponic culture have been shown to rapidly autoregulate nodulation, forming a static nodule number by 14 to 21 days after planting. The present study further characterizes the effect of NH4+ concentration in hydroponic culture on nodulation and nodule growth. Peas were grown continually for 4 weeks at NH4+ concentrations that were autoregulatory (0.0 mM), stimulatory (0.2 mM) or inhibitory (1.0 mM), or peas were transferred between autoregulatory or NH4+ inhibited and stimulatory solutions after 2 weeks. The peas nodulated as expected when grown under constant autoregulatory, stimulatory or inhibitory concentrations of NH4+. When peas were transferred from the inhibitory (1.0 mM) to the stimulatory solution (0.2 mM) a massive proliferation of nodule primordia over the entire root system was observed within 3 days of the transfer. When they were transferred from the autoregulatory (0.0 mM) to the stimulatory (0.2 mM) solution a 10-day delay occurred before a proliferation in nodule primordia occurred at distal regions of the root system. These findings support our hypothesis that low concentrations (<1.0 mM) of NH4+ in hydroponic culture cause a suppression of autoregulation in pea. In addition, the temporal and spatial differences in nodule proliferation between transfer treatments demonstrate at a whole plant level that autoregulation and NH4+ inhibition suppress early nodule development via different mechanisms.