In silico studies of magnesium-based implants: A review of the current stage and challenges

[1]  M. Kannan,et al.  Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys , 2022, Journal of Magnesium and Alloys.

[2]  K. Hoyer,et al.  Influence of proteins on the corrosion of a conventional and selective laser beam melted FeMn alloy in physiological electrolytes , 2022, Corrosion Science.

[3]  C. Cyron,et al.  Combining peridynamic and finite element simulations to capture the corrosion of degradable bone implants and to predict their residual strength , 2022, International Journal of Mechanical Sciences.

[4]  S. Gnedenkov,et al.  The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions , 2021, Journal of Magnesium and Alloys.

[5]  D. Höche,et al.  Computational modelling of magnesium degradation in simulated body fluid under physiological conditions , 2021, Journal of Magnesium and Alloys.

[6]  S. Krieg,et al.  Dorsal instrumentation with and without vertebral body replacement in patients with thoracolumbar osteoporotic fractures shows comparable outcome measures , 2021, European Spine Journal.

[7]  S. Mandal,et al.  A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects , 2021, Journal of Magnesium and Alloys.

[8]  J. Llorca,et al.  Simulation of corrosion and mechanical degradation of additively manufactured Mg scaffolds in simulated body fluid. , 2021, Journal of the mechanical behavior of biomedical materials.

[9]  Jessica M. Hoffman,et al.  Sex, mating and repeatability of Drosophila melanogaster longevity , 2021, Royal Society Open Science.

[10]  C. Tardei,et al.  Biodegradable Mg alloys for orthopedic implants – A review , 2021, Journal of Magnesium and Alloys.

[11]  Wenbo Jiang,et al.  Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study , 2021, Bioactive materials.

[12]  S. Singh,et al.  The role and significance of Magnesium in modern day research-A review , 2021, Journal of Magnesium and Alloys.

[13]  D. Tolnai,et al.  Utilizing Synchrotron Radiation for the Characterization of Biodegradable Magnesium Alloys—From Alloy Development to the Application as Implant Material , 2021, Advanced Engineering Materials.

[14]  M. Meier,et al.  The current performance of biodegradable magnesium-based implants in magnetic resonance imaging: A review , 2021, Bioactive materials.

[15]  I. Greving,et al.  Evaluating the morphology of the degradation layer of pure magnesium via 3D imaging at resolutions below 40 nm , 2021, Bioactive materials.

[16]  M. Mozafari,et al.  Biodegradable magnesium‐based biomaterials: An overview of challenges and opportunities , 2021, MedComm.

[17]  B. Wiese,et al.  Exploring key ionic interactions for magnesium degradation in simulated body fluid – A data-driven approach , 2021, Corrosion Science.

[18]  Liguo Wang,et al.  In vitro corrosion properties of HTHEed Mg-Zn-Y-Nd alloy microtubes for stent applications: Influence of second phase particles and crystal orientation , 2021, Journal of Magnesium and Alloys.

[19]  Mojtaba Barzegari,et al.  Computational modeling of degradation process of biodegradable magnesium biomaterials , 2021, ArXiv.

[20]  S. Narendranath,et al.  Recent progress in in vivo studies and clinical applications of magnesium based biodegradable implants – A review , 2021 .

[21]  H. Breitinger,et al.  Effect of pH on the degradation kinetics of a Mg–0.8Ca alloy for orthopedic implants , 2020 .

[22]  T. Schepers Fixation by Open Reduction and Internal Fixation or Primary Arthrodesis of Calcaneus Fractures: Indications and Technique. , 2020, Foot and ankle clinics.

[23]  W. Ding,et al.  Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants , 2020 .

[24]  Sviatlana V. Lamaka,et al.  Clarifying the influence of albumin on the initial stages of magnesium corrosion in Hank's balanced salt solution , 2020 .

[25]  M. Elahinia,et al.  Corrosion Modeling of Magnesium and Its Alloys for Biomedical Applications: Review , 2020 .

[26]  C. Cyron,et al.  Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models , 2020, Computational Mechanics.

[27]  Sviatlana V. Lamaka,et al.  Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review , 2020, Corrosion Science.

[28]  N. Menshutina,et al.  Cellular Automata in Chemistry and Chemical Engineering. , 2020, Annual review of chemical and biomolecular engineering.

[29]  Shank S. Kulkarni,et al.  An ordinary state based peridynamic correspondence model for metal creep , 2020, Engineering Fracture Mechanics.

[30]  Jiangfeng Song,et al.  Latest research advances on magnesium and magnesium alloys worldwide , 2020, Journal of Magnesium and Alloys.

[31]  C. Gu,et al.  Advances in coatings on biodegradable magnesium alloys , 2020 .

[32]  B. Markert,et al.  Phase field modelling of stress assisted corrosion of biodegradable magnesium alloys , 2019, PAMM.

[33]  N. Scharnagl,et al.  Different effects of single protein vs. protein mixtures on magnesium degradation under cell culture conditions. , 2019, Acta biomaterialia.

[34]  Enda L. Boland,et al.  Computational modelling of magnesium stent mechanical performance in a remodelling artery: Effects of multiple remodelling stimuli , 2019, International journal for numerical methods in biomedical engineering.

[35]  Jingli Luo,et al.  Modeling the effect of insoluble corrosion products on pitting corrosion kinetics of metals , 2019, npj Materials Degradation.

[36]  Z. Pan,et al.  Experimental study and 3D cellular automata simulation of corrosion pits on Q345 steel surface under salt-spray environment , 2019, Corrosion Science.

[37]  Yufeng Zheng,et al.  Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing , 2019, Journal of Materials Science & Technology.

[38]  F. Bobaru,et al.  Computational modeling of pitting corrosion , 2019, Corrosion Reviews.

[39]  Yufeng Zheng,et al.  Biofunctionalization of metallic implants by calcium phosphate coatings , 2019, Bioactive materials.

[40]  Y. Estrin,et al.  Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity? , 2019, Journal of biomedical materials research. Part B, Applied biomaterials.

[41]  Frank Feyerabend,et al.  The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg , 2019, Corrosion Science.

[42]  Amir Putra Md Saad,et al.  Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold , 2019, Biomechanics and Modeling in Mechanobiology.

[43]  Narges Shayesteh Moghaddam,et al.  Predicting the Biodegradation of Magnesium Alloy Implants: Modeling, Parameter Identification, and Validation , 2018, Bioengineering.

[44]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[45]  Ke Yang,et al.  Mechanical properties of magnesium alloys for medical application: A review. , 2018, Journal of the mechanical behavior of biomedical materials.

[46]  Z. Khan,et al.  Electrochemical Comparison of SAN/PANI/FLG and ZnO/GO Coated Cast Iron Subject to Corrosive Environments , 2018, Materials.

[47]  Ping Li,et al.  The effect of tensile and fluid shear stress on the in vitro degradation of magnesium alloy for stent applications , 2018, Bioactive materials.

[48]  John E. Dolbow,et al.  A phase-field formulation for dynamic cohesive fracture , 2018, Computer Methods in Applied Mechanics and Engineering.

[49]  Sviatlana V. Lamaka,et al.  The Reduction of Dissolved Oxygen During Magnesium Corrosion , 2018, ChemistryOpen.

[50]  Sviatlana V. Lamaka,et al.  Local pH and Its Evolution Near Mg Alloy Surfaces Exposed to Simulated Body Fluids , 2018, Advanced Materials Interfaces.

[51]  J. A. Sanz-Herrera,et al.  In silico design of magnesium implants: Macroscopic modeling. , 2018, Journal of the mechanical behavior of biomedical materials.

[52]  M. Koç,et al.  Review of magnesium-based biomaterials and their applications , 2018 .

[53]  F. Beckmann,et al.  Quantitative characterization of degradation processes in situ by means of a bioreactor coupled flow chamber under physiological conditions using time‐lapse SRµCT , 2018 .

[54]  Frank Feyerabend,et al.  Magnesium degradation under physiological conditions – Best practice , 2018, Bioactive materials.

[55]  F. Bobaru,et al.  Corrosion-induced embrittlement in ZK60A Mg alloy , 2018 .

[56]  N. Birbilis,et al.  Fundamentals and advances in magnesium alloy corrosion , 2017 .

[57]  Changshun Ruan,et al.  The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior , 2017, Scientific Reports.

[58]  S. Stanzl-Tschegg,et al.  The potential of isotopically enriched magnesium to study bone implant degradation in vivo. , 2017, Acta biomaterialia.

[59]  Akhil Garg,et al.  Finite Element Based Physical Chemical Modeling of Corrosion in Magnesium Alloys , 2017 .

[60]  Thomas J. R. Hughes,et al.  A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects , 2016 .

[61]  Haitao Xu,et al.  Comparison of the effect on bone healing process of different implants used in minimally invasive plate osteosynthesis: limited contact dynamic compression plate versus locking compression plate , 2016, Scientific Reports.

[62]  G. Luciano,et al.  3D cellular automata simulations of intra and intergranular corrosion , 2016 .

[63]  Soheil Soghrati,et al.  A phase field model for simulating the pitting corrosion , 2016 .

[64]  Mirco Zaccariotto,et al.  An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems , 2016 .

[65]  L. Geris,et al.  Mathematical modelling of the degradation behaviour of biodegradable metals , 2016, Biomechanics and Modeling in Mechanobiology.

[66]  O. Arthurs,et al.  Imaging Invasion: Micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion , 2016, Acta neuropathologica communications.

[67]  I. Moon,et al.  Kriging models for forecasting crude unit overhead corrosion , 2016, Korean Journal of Chemical Engineering.

[68]  F. Feyerabend,et al.  Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization. , 2016, Materials science & engineering. C, Materials for biological applications.

[69]  Regine Willumeit-Römer,et al.  In vitro and in vivo comparison of binary Mg alloys and pure Mg. , 2016, Materials science & engineering. C, Materials for biological applications.

[70]  N. Huang,et al.  Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study. , 2016, Corrosion science.

[71]  Jan-Marten Seitz,et al.  Magnesium-Based Compression Screws: A Novelty in the Clinical Use of Implants , 2016 .

[72]  A. Atrens,et al.  The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution , 2015 .

[73]  A. Wennerberg,et al.  Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells , 2015, PloS one.

[74]  Caoimhe A. Sweeney,et al.  A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents , 2015, Annals of Biomedical Engineering.

[75]  E. Han,et al.  In vitro degradation of pure Mg in response to glucose , 2015, Scientific Reports.

[76]  Ling-Ling Shi,et al.  Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications. , 2015, Journal of the mechanical behavior of biomedical materials.

[77]  Ziguang Chen,et al.  Peridynamic modeling of pitting corrosion damage , 2015 .

[78]  M. Dargusch,et al.  Review of Recent Developments in the Field of Magnesium Corrosion , 2015 .

[79]  Frank Feyerabend,et al.  Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. , 2015, Acta biomaterialia.

[80]  Pooja Arora,et al.  Implant biomaterials: A comprehensive review. , 2015, World journal of clinical cases.

[81]  Yufeng Zheng,et al.  Progress of biodegradable metals , 2014 .

[82]  Frank Feyerabend,et al.  Magnesium-based implants: a mini-review. , 2014, Magnesium research.

[83]  X. Granados,et al.  Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip , 2014, Analytical and Bioanalytical Chemistry.

[84]  E. Han,et al.  Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution , 2014 .

[85]  M. Escudero,et al.  Modeling in vivo corrosion of AZ31 as temporary biodegradable implants. Experimental validation in rats. , 2014, Materials science & engineering. C, Materials for biological applications.

[86]  T. Woodfield,et al.  Magnesium biomaterials for orthopedic application: a review from a biological perspective. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[87]  Anthony Nicholls,et al.  Confidence limits, error bars and method comparison in molecular modeling. Part 1: The calculation of confidence intervals , 2014, Journal of Computer-Aided Molecular Design.

[88]  B. Baets,et al.  Modeling pitting corrosion by means of a 3D discrete stochastic model , 2014 .

[89]  P E McHugh,et al.  A physical corrosion model for bioabsorbable metal stents. , 2014, Acta biomaterialia.

[90]  L. Geris,et al.  A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study , 2014, Biomechanics and modeling in mechanobiology.

[91]  D. Höche,et al.  Mikrogalvanische Korrosion am Magnesium‐Aluminium System – Detaillierte elektrochemische Einblicke mittels FEM‐Simulationen , 2013 .

[92]  Frank Feyerabend,et al.  Magnesium degradation as determined by artificial neural networks. , 2013, Acta biomaterialia.

[93]  Diego Mantovani,et al.  Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. , 2013, Acta biomaterialia.

[94]  J. Sankar,et al.  Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion. , 2013, Acta biomaterialia.

[95]  J. A. Grogan,et al.  Optimizing the design of a bioabsorbable metal stent using computer simulation methods. , 2013, Biomaterials.

[96]  J. Stafiej,et al.  Corrosion-passivation processes in a cellular automata based simulation study , 2013, The Journal of Supercomputing.

[97]  Simon R. Phillpot,et al.  Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective , 2013 .

[98]  H. Kim,et al.  A Case Report of Long-Term Bisphosphonate Therapy and Atypical Stress Fracture of Bilateral Femur , 2013, Annals of rehabilitation medicine.

[99]  Milan Raska,et al.  Particle disease: Biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty , 2013, Innate immunity.

[100]  Tingting Wu,et al.  An arbitrary Lagrangian–Eulerian model for studying the influences of corrosion product deposition on bimetallic corrosion , 2013, Journal of Solid State Electrochemistry.

[101]  Roberto Natalini,et al.  A Mathematical model of copper corrosion , 2012, 1211.6938.

[102]  J. Kish,et al.  Influence of edge effects on local corrosion rate of magnesium alloy/mild steel galvanic couple. , 2012, Analytical chemistry.

[103]  T Sumner,et al.  A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling , 2012, Journal of The Royal Society Interface.

[104]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[105]  N Birbilis,et al.  Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. , 2012, Acta biomaterialia.

[106]  Lorenza Petrini,et al.  Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels , 2011 .

[107]  Sannakaisa Virtanen,et al.  Biodegradable Mg and Mg alloys: Corrosion and biocompatibility , 2011 .

[108]  P E McHugh,et al.  A corrosion model for bioabsorbable metallic stents. , 2011, Acta biomaterialia.

[109]  Santanu Chaudhuri,et al.  Predictive modeling of localized corrosion: An application to aluminum alloys , 2011 .

[110]  Christopher J. Roy,et al.  A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .

[111]  L Petrini,et al.  Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents. , 2011, Journal of the mechanical behavior of biomedical materials.

[112]  P. Chu,et al.  Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3 , 2011 .

[113]  K. Deshpande Numerical modeling of micro-galvanic corrosion , 2011 .

[114]  R. Willumeit,et al.  XPS Studies of Magnesium Surfaces after Exposure to Dulbecco's Modified Eagle Medium, Hank's Buffered Salt Solution, and Simulated Body Fluid , 2010 .

[115]  Y. Iwakura,et al.  Periprosthetic osteolysis: Characterizing the innate immune response to titanium wear‐particles , 2010, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[116]  Kiran B. Deshpande,et al.  Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution , 2010 .

[117]  Kiran B. Deshpande,et al.  Experimental investigation of galvanic corrosion: Comparison between SVET and immersion techniques , 2010 .

[118]  Wei Wu,et al.  Finite Element Shape Optimization for Biodegradable Magnesium Alloy Stents , 2010, Annals of Biomedical Engineering.

[119]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[120]  Jianwei Xu,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. , 2010, Acta biomaterialia.

[121]  Waheed A. Badawy,et al.  Electrochemical behavior of Mg and some Mg alloys in aqueous solutions of different pH , 2010 .

[122]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[123]  Roger Ghanem,et al.  Uncertainty Quantification in Computational and Prediction Science , 2009 .

[124]  C. Blanc,et al.  Localized Approach to Galvanic Coupling in an Aluminum–Magnesium System , 2009 .

[125]  Akiko Yamamoto,et al.  Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro , 2009 .

[126]  E. Zhang,et al.  Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application , 2009 .

[127]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[128]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[129]  Michael Böhm,et al.  A moving-boundary problem for concrete carbonation:global existence and uniqueness of weak solutions , 2009 .

[130]  Barry L. Nelson,et al.  Stochastic kriging for simulation metamodeling , 2008, 2008 Winter Simulation Conference.

[131]  Yunchang Xin,et al.  Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. , 2008, Acta biomaterialia.

[132]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[133]  M. Wenman,et al.  A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel , 2008 .

[134]  Frank Witte,et al.  Progress and Challenge for Magnesium Alloys as Biomaterials , 2008 .

[135]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[136]  Andrej Atrens,et al.  Recent Insights into the Mechanism of Magnesium Corrosion and Research Suggestions , 2007 .

[137]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[138]  Stefan Scheiner,et al.  Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary , 2007 .

[139]  Andrej Atrens,et al.  Experimental Measurement and Computer Simulation of Galvanic Corrosion of Magnesium Coupled to Steel , 2007 .

[140]  Philipp Beerbaum,et al.  Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , 2006, Biomaterials.

[141]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[142]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[143]  E. Ghali,et al.  General and localized corrosion of magnesium alloys: A critical review , 2004 .

[144]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[145]  Ayako Oyane,et al.  Preparation and assessment of revised simulated body fluids. , 2003, Journal of biomedical materials research. Part A.

[146]  R. Larson A Physical and Mathematical Model for the Atmospheric Sulfidation of Copper by Hydrogen Sulfide , 2002 .

[147]  M. Peuster,et al.  A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits , 2001, Heart.

[148]  J. T. Waber,et al.  Mathematical Study of Galvanic Corrosion Equal Coplanar Anode and Cathode with Unequal Polarization Parameters , 1970 .

[149]  J. Waber Mathematical Studies of Galvanic Corrosion VI. . Limiting Case of Very Thin Films , 1956 .

[150]  G. A. Muccini,et al.  Characteristics of porous beds and structures , 1956 .

[151]  J. Ruth,et al.  Mathematical Studies on Galvanic Corrosion V . Calculation of the Average Value of the Corrosion Current Parameter , 1956 .

[152]  J. Waber Mathematical Studies of Galvanic Corrosion III . Semi‐infinite Coplanar Electrodes with Equal Constant Polarization Parameters , 1955 .

[153]  J. Waber,et al.  Mathematical Studies of Galvanic Corrosion II . Coplanar Electrodes with One Electrode Infinitely Large and with Equal Polarization Parameters , 1955 .

[154]  J. Waber Mathematical Studies on Galvanic Corrosion I . Coplanar Electrodes with Negligible Polarization , 1954 .

[155]  F. Bobaru,et al.  A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking , 2021 .

[156]  P. Wriggers,et al.  A simulation model for the degradation of magnesium-based bone implants. , 2019, Journal of the mechanical behavior of biomedical materials.

[157]  R. Willumeit-Römer,et al.  Inflammatory response to magnesium-based biodegradable implant materials. , 2019, Acta biomaterialia.

[158]  Fu-hui Wang,et al.  Cellular Automata Study of the Combined Effects of Passive Film Breakdown and Repassivation on Metastable Pits on Sputtered Nanocrystalline Stainless Steel , 2019, Journal of The Electrochemical Society.

[159]  F. Bobaru,et al.  Elastic vortices and thermally-driven cracks in brittle materials with peridynamics , 2017, International Journal of Fracture.

[160]  F. Feyerabend,et al.  Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions , 2016 .

[161]  J. Leopold,et al.  Numerical Modelling of Microstructure Evolution in Ti6Al4V Alloy by Ultrasonic Assisted Cutting , 2016 .

[162]  F. Bobaru,et al.  Analysis of Corrosion-Induced Diffusion Layer in ZK60A Magnesium Alloy , 2016 .

[163]  B. Mihailova,et al.  Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models. , 2016, Materials science & engineering. C, Materials for biological applications.

[164]  D. Höche Simulation of Corrosion Product Deposit Layer Growth on Bare Magnesium Galvanically Coupled to Aluminum , 2015 .

[165]  J. P. Badiali,et al.  Morphology of corroded surfaces: Contribution of cellular automaton modelling , 2011 .

[166]  O. Böstman Absorbable implants for the fixation of fractures. , 1991, The Journal of bone and joint surgery. American volume.

[167]  J. T. Waber,et al.  Mathematical Studies on Galvanic Corrosion IV . Influence of Electrolyte Thickness on the Potential and Current Distributions over Coplanar Electrodes Using Polarization Parameters , 1956 .