Kinetic analysis of artificial peptide self-replication. Part II: the heterochiral case.

A kinetic model has been designed to describe and to analyze the stereoselective behavior of a recently discovered heterochiral template-directed peptide self-replicator by Ghadiri and co-workers [Nature 409 (2001) 797-801]. It turned out that previous assumptions stating that exclusively homochiral species participate in a stereoselective and autocatalytic pathway and that heterochiral species originate only from uncatalyzed background reactions could not be validated by our model. On the contrary, excellent fitting of experimental data indicated that the whole combinatorial variety of possible cross-catalytic processes involving L- and D- peptide species play an important role and need to be taken into account. The system shows no net creation of chiral matter but only a redistribution of the initially present chiral material. Both, the separation of an optically inactive meso-type template dimer and a slight chiroselective autocatalytic effect, contribute to a predicted amplification of enantiomeric excess that, in some cases, can simultaneously result in a substantial amount of optically active matter.

[1]  P. Cintas,et al.  Nonlinear stereochemical effects in asymmetric reactions , 1997 .

[2]  J. Chmielewski,et al.  Helical peptide and protein design. , 1999, Current opinion in chemical biology.

[3]  Christian Girard,et al.  Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. , 1998, Angewandte Chemie.

[4]  E. Wintner,et al.  Evidence against an Alternative Mechanism for a Self-Replicating System , 1995 .

[5]  Douglas Philp,et al.  Minimal self-replicating systems , 2000 .

[6]  I. Bernal Conglomerate crystallization and chiral discrimination phenomena: In vivo and in vitro , 1992 .

[7]  M. Matzen,et al.  Parabolic Growth of a Self‐Replicating Hexadeoxynucleotide Bearing a 3'‐5'‐Phosphoamidate Linkage , 1991 .

[8]  D. Kondepudi,et al.  Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. , 2001, Accounts of chemical research.

[9]  Alan Saghatelian,et al.  A chiroselective peptide replicator , 2001, Nature.

[10]  D. Kondepudi,et al.  Weak neutral currents and the origin of biomolecular chirality , 1985, Nature.

[11]  A. Eliseev,et al.  Evidence for an Alternative Mechanism to a Previously Proposed Self-Replicating System , 1995 .

[12]  R. Lemmon Chemical Evolution , 1972, Nature.

[13]  J. Micheau,et al.  Review Chiral resolutions, asymmetric synthesis and amplification of enantiomeric excess , 1988 .

[14]  D. Kondepudi,et al.  Chiral Symmetry Breaking in Sodium Chlorate Crystallizaton , 1990, Science.

[15]  Kay Severin,et al.  Dynamic Error Correction in Autocatalytic Peptide Networks , 1998 .

[16]  M A Nowak,et al.  Quantifying the kinetic parameters of prion replication. , 1999, Biophysical chemistry.

[17]  M. Famulok,et al.  Self-replicating systems. , 1992, Acta chemica Scandinavica.

[18]  Julius Rebek,et al.  Autocatalysis and the Generation of Self-Replicating Systems. , 1996 .

[19]  G. R. Cousins,et al.  Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. , 2000, Current opinion in chemical biology.

[20]  L. Orgel,et al.  Autocatalytic synthesis of a tetranucleotide analogue , 1987, Nature.

[21]  Yohei Yokobayashi,et al.  Emergence of symbiosis in peptide self-replication through a hypercyclic network , 1997, Nature.

[22]  Jean Chmielewski,et al.  Approaching exponential growth with a self-replicating peptide. , 2002, Journal of the American Chemical Society.

[23]  K. Soai,et al.  Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. , 2000, Accounts of chemical research.

[24]  S Assouline,et al.  Simulation of non-enzymatic template-directed synthesis of oligonucleotides and peptides. , 2001, Journal of theoretical biology.

[25]  L. Keszthelyi Origin of the homochirality of biomolecules , 1995, Quarterly Reviews of Biophysics.

[26]  P. Rentrop,et al.  Application of a variable-order semi-implicit Runge-Kutta method to chemical models , 1984 .

[27]  J. Chmielewski,et al.  The design of self-replicating helical peptides. , 2001, Current opinion in structural biology.

[28]  P. Lansbury,et al.  Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Hoskins,et al.  Kinetics of chiral resolution in stirred crystallization of D/L‐glutamic acid , 1999 .

[30]  W. Bonner,et al.  The origin and amplification of biomolecular chirality , 2005, Origins of life and evolution of the biosphere.

[31]  Günter von Kiedrowski,et al.  Minimal Replicator Theory I: Parabolic Versus Exponential Growth , 1993 .

[32]  M. Eigen,et al.  Prionics or the kinetic basis of prion diseases. , 1996, Biophysical chemistry.

[33]  David N. Reinhoudt,et al.  Kinetic analysis of the Rebek self-replicating system: is there a controversy? , 1996 .

[34]  G. Kiedrowski,et al.  Sequence Dependence of Template‐Directed Syntheses of Hexadeoxynucleotide Derivatives with 3′–5′ Pyrophosphate Linkage , 1989 .

[35]  Kay Severin,et al.  Peptide Self-Replication via Template-Directed Ligation , 1997 .

[36]  F. Frank,et al.  On spontaneous asymmetric synthesis. , 1953, Biochimica et biophysica acta.

[37]  Juan R. Granja,et al.  A self-replicating peptide , 1996, Nature.

[38]  P. Cintas,et al.  From parity to chirality: chemical implications revisited† , 2000 .

[39]  Jean Jacques,et al.  Enantiomers, Racemates, and Resolutions , 1981 .

[40]  W. Thiemann,et al.  Chiral symmetry breaking: Experimental results and computer analysis of a liquid‐phase autoxidation , 1993 .

[41]  G. von Kiedrowski,et al.  Templates, autocatalysis and molecular replication , 1996 .

[42]  G. Snatzke J. Jaques, A. Collet, and S. H. Wilen: Enantiomers, Racemates, and Resolutions, J. Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto 1981. 447 Seiten, Preis: £ 38.75 , 1982 .

[43]  G. Pályi,et al.  Advances in BioChirality , 1999 .