Quantitative Trait Loci Identify Functional Noncoding Variation in Cancer

The interpretation of noncoding alterations in cancer genomes presents an unresolved problem in cancer studies. While the impact of somatic variations in protein-coding regions is widely accepted, noncoding aberrations are mostly considered as passenger events. However, with the advance of genome-wide profiling strategies, alterations outside the coding context entered the focus, and multiple examples highlight the role of gene deregulation as cancer-driving events. This review describes the implication of noncoding alterations in oncogenesis and provides a theoretical framework for the identification of causal somatic variants using quantitative trait loci (QTL) analysis. Assuming that functional noncoding alterations affect quantifiable regulatory processes, somatic QTL studies constitute a valuable strategy to pinpoint cancer gene deregulation. Eventually, the comprehensive identification and interpretation of coding and noncoding alterations will guide our future understanding of cancer biology.

[1]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[2]  C. Sander,et al.  Genome-wide analysis of non-coding regulatory mutations in cancer , 2014, Nature Genetics.

[3]  T. Marquès-Bonet,et al.  DNA methylation contributes to natural human variation , 2013, Genome research.

[4]  C. Carlson,et al.  Principles for the post-GWAS functional characterization of cancer risk loci , 2011, Nature Genetics.

[5]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[6]  D. Zwijnenburg,et al.  Abstract PR06: TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors , 2016 .

[7]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[8]  P. Campbell,et al.  OncoCis: annotation of cis-regulatory mutations in cancer , 2014, Genome Biology.

[9]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .

[10]  B. Stranger,et al.  Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. , 2014, Human molecular genetics.

[11]  E. Larsson,et al.  Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types , 2014, Nature Genetics.

[12]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[13]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[14]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[15]  A. Beyer,et al.  Detection and interpretation of expression quantitative trait loci (eQTL). , 2009, Methods.

[16]  H. Heyn A symbiotic liaison between the genetic and epigenetic code , 2014, Front. Genet..

[17]  Holger Heyn,et al.  Linkage of DNA methylation quantitative trait loci to human cancer risk. , 2014, Cell reports.

[18]  R. C. Poulos,et al.  The search for cis-regulatory driver mutations in cancer genomes , 2015, Oncotarget.

[19]  R. Young,et al.  An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element , 2014, Science.

[20]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[21]  Chris Sander,et al.  Emerging landscape of oncogenic signatures across human cancers , 2013, Nature Genetics.

[22]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[23]  Thomas Lengauer,et al.  BLUEPRINT to decode the epigenetic signature written in blood , 2012, Nature Biotechnology.

[24]  G. Hon,et al.  Adult tissue methylomes harbor epigenetic memory at embryonic enhancers , 2013, Nature Genetics.

[25]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[26]  Gary D Bader,et al.  Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma , 2014, Nature.

[27]  Judith B. Zaugg,et al.  Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions , 2015, Cell.

[28]  R. Durbin,et al.  Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses , 2012, Nature Protocols.

[29]  Manel Esteller,et al.  Cis-acting noncoding RNAs: friends and foes , 2012, Nature Structural &Molecular Biology.

[30]  Michael Q. Zhang,et al.  Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications , 2010, Nature Biotechnology.

[31]  M. Snyder,et al.  Recurrent Somatic Mutations in Regulatory Regions of Human Cancer Genomes , 2015, Nature Genetics.

[32]  Britta A. M. Bouwman,et al.  A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia , 2014, Cell.

[33]  R. Shoemaker,et al.  Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. , 2010, Genome research.

[34]  O. Delaneau,et al.  Population Variation and Genetic Control of Modular Chromatin Architecture in Humans , 2015, Cell.

[35]  A. Gnirke,et al.  Charting a dynamic DNA methylation landscape of the human genome , 2013, Nature.

[36]  Brent S. Pedersen,et al.  Signatures of accelerated somatic evolution in gene promoters in multiple cancer types , 2015, Nucleic acids research.

[37]  D. Schübeler Epigenetic Islands in a Genetic Ocean , 2012, Science.

[38]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[39]  Kevin Y. Yip,et al.  FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer , 2014, Genome Biology.

[40]  R. C. Poulos,et al.  Systematic Screening of Promoter Regions Pinpoints Functional Cis-Regulatory Mutations in a Cutaneous Melanoma Genome , 2015, Molecular Cancer Research.

[41]  David J. Arenillas,et al.  Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas , 2014, Genome Biology.

[42]  William Stafford Noble,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2012, Nature Methods.

[43]  Emmanouil T. Dermitzakis,et al.  Putative cis-regulatory drivers in colorectal cancer , 2014, Nature.

[44]  Vijay K. Tiwari,et al.  DNA-binding factors shape the mouse methylome at distal regulatory regions , 2011, Nature.

[45]  K. Gunderson,et al.  High density DNA methylation array with single CpG site resolution. , 2011, Genomics.

[46]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[47]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[48]  Michael Q. Zhang,et al.  Integrative analysis of haplotype-resolved epigenomes across human tissues , 2015, Nature.

[49]  Simon C. Potter,et al.  Mapping cis- and trans-regulatory effects across multiple tissues in twins , 2012, Nature Genetics.

[50]  Colin Campbell,et al.  An integrative approach to predicting the functional effects of non-coding and coding sequence variation , 2015, Bioinform..

[51]  Richard Durbin,et al.  Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins , 2014, Nature Genetics.

[52]  Gabor T. Marth,et al.  Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics , 2013, Science.

[53]  A. Valencia,et al.  Non-coding recurrent mutations in chronic lymphocytic leukaemia , 2015, Nature.