Optoelectronic modulation by multi-wall carbon nanotubes

We report the observation of photoconduction and a strong nonlinear optical absorptive response exhibited by multi-wall carbon nanotubes. An aerosol pyrolysis method was employed for the preparation of the samples. Measurements of the optical transmittance with 7 ns pulses at 1064 nm wavelength allowed us to identify a two-photon absorption effect as the main mechanism of third-order nonlinearity. Photoconductive experiments at 445 nm wavelength seem to confirm the possibility for generating non-resonant multi-photonic absorption processes in the multi-wall carbon nanotubes. By the optical control of the conductivity in the nanotubes, we implement an optoelectronic amplitude modulator device with potential applications for sharp selective functionalities.

[1]  A. Moradi Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media , 2010 .

[2]  I. I. Zasavitskii,et al.  Active-region designs in quantum cascade lasers , 2012 .

[3]  P. Bandaru Electrical properties and applications of carbon nanotube structures. , 2007, Journal of nanoscience and nanotechnology.

[4]  Igor A. Levitsky,et al.  Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination , 2003 .

[5]  C. N. Lau,et al.  Electronic double slit interferometers based on carbon nanotubes. , 2011, Nano letters.

[6]  Samuli Kivistö,et al.  Carbon nanotube films for ultrafast broadband technology. , 2009, Optics express.

[7]  J. Boland,et al.  Optimization of multi-walled carbon nanotube–metal contacts by electrical stressing , 2010, Nanotechnology.

[8]  J. Maultzsch,et al.  Chirality-selective Raman scattering of the D mode in carbon nanotubes , 2001 .

[9]  S. Reich,et al.  Exciton resonances quench the photoluminescence of zigzag carbon nanotubes. , 2005, Physical review letters.

[10]  D. S. Bradshaw,et al.  Laser-induced forces between carbon nanotubes. , 2005, Optics letters.

[11]  Riichiro Saito,et al.  Characterizing carbon nanotube samples with resonance Raman scattering , 2003 .

[12]  N Izard,et al.  Influence of structure on the optical limiting properties of nanotubes. , 2005, Optics letters.

[13]  M. Terrones Materials science: Nanotubes unzipped , 2009, Nature.

[14]  X. Wang,et al.  Effects of initial stress on transverse wave propagation in carbon nanotubes based on Timoshenko laminated beam models , 2006 .

[15]  M. Terrones,et al.  Evaluating the characteristics of multiwall carbon nanotubes , 2011 .

[16]  V. Margulis,et al.  Electric-field-induced optical second-harmonic generation and nonlinear optical rectification in semiconducting carbon nanotubes , 2000 .

[17]  Yongmin Jung,et al.  Optical anisotropy in single-walled carbon nanotubes. , 2005, Optics letters.

[18]  M. Terrones,et al.  Magnetic response in finite carbon graphene sheets and nanotubes , 2006 .

[19]  S. Weiner,et al.  New radiocarbon dating of the transition from the Middle to the Upper Paleolithic in Kebara Cave, Israel , 2011 .

[20]  M. Rincón,et al.  Design of hybrid materials based on carbon nanotubes and polyoxometalates , 2006 .

[21]  Alexander Star,et al.  Gas sensor array based on metal-decorated carbon nanotubes. , 2006, The journal of physical chemistry. B.

[22]  V. Margulis,et al.  Non-degenerate optical four-wave mixing in single-walled carbon nanotubes , 2005 .

[23]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[24]  D. Sprinzak,et al.  An electronic Mach–Zehnder interferometer , 2003, Nature.

[25]  J. Castro-Chacón,et al.  Ultrafast nonlinear optical response of photoconductive ZnO films with fluorine nanoparticles. , 2011, Optics express.

[26]  Bin Zhao,et al.  Electronic properties of single-walled carbon nanotube networks. , 2005, Journal of the American Chemical Society.

[27]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[28]  M. Shaijumon,et al.  Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques , 2007 .

[29]  Modulation of thermoelectric power of individual carbon nanotubes. , 2003, Physical review letters.

[30]  C. Rao,et al.  Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements , 2007, 0710.2721.

[31]  M. Terrones,et al.  Controlling the dimensions, reactivity and crystallinity of multiwalled carbon nanotubes using low ethanol concentrations , 2008 .

[32]  P. Morfin,et al.  Shot noise in Fabry-Perot interferometers based on carbon nanotubes. , 2007, Physical review letters.

[33]  Haider Butt,et al.  Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device. , 2009, Optics letters.

[34]  M. Jayaraj,et al.  Linear and Nonlinear Optical Properties of Multi Walled Carbon Nanotubes with Attached Gold Nanoparticles , 2011 .

[35]  J. A. Briones-Leon,et al.  Millimeter-long carbon nanotubes: outstanding electron-emitting sources. , 2011, ACS nano.

[36]  Yuelin Wang,et al.  The synthesis and fabrication of horizontally aligned single-walled carbon nanotubes suspended across wide trenches for infrared detecting application , 2009, Nanotechnology.

[37]  S. Khondaker,et al.  Diffusion mediated photoconduction in multiwalled carbon nanotube films , 2009, 0904.4452.

[38]  Feng Liang,et al.  A review on biomedical applications of single-walled carbon nanotubes. , 2010, Current medicinal chemistry.

[39]  T. Krauss,et al.  Photophysics of Individual Single-Walled Carbon Nanotubes , 2008 .

[40]  N. Zheludev,et al.  THz bandwidth optical switching with carbon nanotube metamaterial. , 2012, Optics express.

[41]  Choongho Yu,et al.  Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration. , 2011, ACS nano.