Multiresolution wavelet framework models brightness induction effects

[1]  R. Osborne The Principles of Harmony and Contrast of Colors and Their Applications to the Arts by M.E. Chevreul (review) , 2017 .

[2]  L. Harris,et al.  Levels of Perception , 2013, Springer New York.

[3]  Frank E. Pollick,et al.  Obtaining features for the recognition of human movement style , 2010 .

[4]  Vidal Annan,et al.  Can indexes be voluntarily assigned in multiple object tracking , 2010 .

[5]  Robert Desimone,et al.  Top-down, but not bottom-up: Deficits in target selection in monkeys with prefrontal lesions , 2010 .

[6]  Alan E. Robinson,et al.  Explaining brightness illusions using spatial filtering and local response normalization , 2007, Vision Research.

[7]  Matthias S. Keil,et al.  Smooth Gradient Representations as a Unifying Account of Chevreul's Illusion, Mach Bands, and a Variant of the Ehrenstein Disk , 2006, Neural Computation.

[8]  William A. Simpson,et al.  Spatial frequency channels derived from individual differences , 2005, Vision Research.

[9]  M. McCourt,et al.  Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast , 2005, Vision Research.

[10]  Daniele Zavagno,et al.  DOI:10.1068/p5095 Glowing greys and surface-white: The photo-geometric factors of luminosity perception , 2005 .

[11]  C. Zetzsche,et al.  Nonlinear and higher-order approaches to the encoding of natural scenes , 2005, Network.

[12]  Alexander D Logvinenko,et al.  Hering's and Helmholtz's types of simultaneous lightness contrast. , 2004, Journal of vision.

[13]  M. McCourt,et al.  A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization , 2004, Vision Research.

[14]  P. Laurinen,et al.  Separation of edge detection and brightness perception , 2004, Vision Research.

[15]  S. Klein,et al.  Cross- and iso- oriented surrounds modulate the contrast response function: the effect of surround contrast. , 2003, Journal of vision.

[16]  A. Werner The spatial tuning of chromatic adaptation , 2003, Vision Research.

[17]  P. Bressan,et al.  A Fair Test of the Effect of a Shadow-Incompatible Luminance Gradient on the Simultaneous Lightness Contrast (followed by Discussion) , 2003, Perception.

[18]  S. Klein,et al.  Facilitation of contrast detection by cross-oriented surround stimuli and its psychophysical mechanisms. , 2002, Journal of vision.

[19]  Alessandra Galmonte,et al.  Perceptual Organization Overcomes the Effects of Local Surround in Determining Simultaneous Lightness Contrast , 2002, Psychological science.

[20]  M. McCourt,et al.  A multiscale spatial filtering account of the Wertheimer–Benary effect and the corrugated Mondrian , 2001, Vision Research.

[21]  P. Bressan Explaining Lightness Illusions , 2001, Perception.

[22]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[23]  D M Levi,et al.  Surround modulation of perceived contrast and the role of brightness induction. , 2001, Journal of vision.

[24]  Phil Q. Jin,et al.  The role of spatial frequency in color induction , 2001, Vision Research.

[25]  G. Caputo,et al.  The Glare Effect and the Perception of Luminosity , 2001, Perception.

[26]  Hedva Spitzer,et al.  Color constancy: a biological model and its application for still and video images , 2000, 21st IEEE Convention of the Electrical and Electronic Engineers in Israel. Proceedings (Cat. No.00EX377).

[27]  M. McCourt,et al.  A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction , 1999, Vision Research.

[28]  A. Gilchrist,et al.  An anchoring theory of lightness perception. , 1999, Psychological review.

[29]  David J. Field,et al.  Wavelets, vision and the statistics of natural scenes , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  D Zavagno,et al.  Some New Luminance-Gradient Effects , 1999, Perception.

[31]  A. Logvinenko Lightness Induction Revisited , 1999, Perception.

[32]  D Purves,et al.  An empirical basis for Mach bands. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Bernard Moulden,et al.  A two-dimensional model of brightness perception based on spatial filtering consistent with retinal processing , 1999, Vision Research.

[34]  Reinhold Kliegl,et al.  Color vision : perspectives from different disciplines , 1998 .

[35]  H R Wilson,et al.  Apparent contrast and spatial frequency of local texture elements. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[37]  M. McCourt,et al.  Similar mechanisms underlie simultaneous brightness contrast and grating induction , 1997, Vision Research.

[38]  D. Todorović Lightness and Junctions , 1997, Perception.

[39]  B. Anderson A Theory of Illusory Lightness and Transparency in Monocular and Binocular Images: The Role of Contour Junctions , 1997, Perception.

[40]  D. Heeger,et al.  Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[41]  L. Spillmann,et al.  Long-range interactions in visual perception , 1996, Trends in Neurosciences.

[42]  Michael A. Paradiso,et al.  The Representation of Brightness in Primary Visual Cortex , 1996, Science.

[43]  George Sperling,et al.  Second-order illusions: Mach bands, chevreul, and Craik-O'Brien-Cornsweet , 1996, Vision Research.

[44]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Heiko Neumann,et al.  A Contrast- and Luminance-driven Multiscale Network Model of Brightness Perception , 1995, Vision Research.

[46]  M. C. Morrone,et al.  Illusory brightness step in the chevreul illusion , 1994, Vision Research.

[47]  J. M. Hans du Buf,et al.  Ramp edges, Mach bands, and the functional significance of the simple cell assembly , 1994, Biological Cybernetics.

[48]  E. Adelson Perceptual organization and the judgment of brightness. , 1993, Science.

[49]  G. Sperling,et al.  The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation , 1993, Vision Research.

[50]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[51]  F. Kingdom,et al.  A multi-channel approach to brightness coding , 1992, Vision Research.

[52]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[53]  F. Kingdom,et al.  The local border mechanism in grating induction , 1991, Vision Research.

[54]  Mark W. Cannon,et al.  Spatial interactions in apparent contrast: Inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations , 1991, Vision Research.

[55]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[56]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  Q. Zaidi Local and distal factors in visual grating induction , 1989, Vision Research.

[58]  J A Solomon,et al.  Texture interactions determine perceived contrast , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[59]  L. Spillmann,et al.  Visual Perception: The Neurophysiological Foundations , 1989 .

[60]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[62]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[63]  L. Sharpe,et al.  Assimilative hue shifts in color depend on bar width , 1986 .

[64]  Yoshimichi Ejima,et al.  Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings , 1985, Vision Research.

[65]  R. Watt,et al.  A theory of the primitive spatial code in human vision , 1985, Vision Research.

[66]  J. M. Foley,et al.  Visual grating induction. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[67]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[68]  H. Wilson,et al.  Spatial frequency tuning of orientation selective units estimated by oblique masking , 1983, Vision Research.

[69]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[70]  M. McCourt A spatial frequency dependent grating-induction effect , 1982, Vision Research.

[71]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[72]  M White,et al.  The Effect of the Nature of the Surround on the Perceived Lightness of Grey Bars within Square-Wave Test Gratings , 1981, Perception.

[73]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[74]  M. White,et al.  A New Effect of Pattern on Perceived Lightness , 1979, Perception.

[75]  James T. Walker,et al.  Brightness enhancement and the Talbot level in stationary gratings , 1978, Perception & psychophysics.

[76]  E. William Yund,et al.  Color and brightness contrast effects as a function of spatial variables , 1975, Vision Research.

[77]  S. Klein,et al.  The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings. , 1974, Vision research.

[78]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[79]  D. Mackay,et al.  Lateral Interaction between Neural Channels sensitive to Texture Density? , 1973, Nature.

[80]  D. Tolhurst On the possible existence of edge detector neurones in the human visual system , 1972 .

[81]  N. Graham,et al.  Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channels models. , 1971, Vision research.

[82]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[83]  M. A. Bouman,et al.  Spatial Modulation Transfer in the Human Eye , 1967 .

[84]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[85]  E. G. Heinemann,et al.  Simultaneous brightness induction as a function of inducing and test-field luminances. , 1955, Journal of experimental psychology.

[86]  H. Wallach Brightness constancy and the nature of achromatic colors. , 1948, Journal of experimental psychology.

[87]  W. Benary,et al.  Beobachtungen zu einem Experiment über Helligkeitskontrast , 1924 .

[88]  A. Logvinenko,et al.  Adelson's tile and snake illusions: a Helmholtzian type of simultaneous lightness contrast. , 2005, Spatial vision.

[89]  D. Tolhurst,et al.  Organization of neurones preferring similar spatial frequencies in cat striate cortex , 2004, Experimental Brain Research.

[90]  Frederick A. A. Kingdom,et al.  Levels of Brightness Perception , 2003 .

[91]  P. Bressan A fair test of the effect of a shadow-incompatible luminance gradient on the simultaneous lightness contrast. Comment , 2003 .

[92]  Sophie M. Wuerger,et al.  'Color Vision: From Genes to Perception' , 2000 .

[93]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[94]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[95]  S. Mallat A wavelet tour of signal processing , 1998 .

[96]  L O Harvey,et al.  Visual masking at different polar angles in the two-dimensional Fourier plane. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[97]  James P. Thomas,et al.  7 – THE PERCEPTION OF BRIGHTNESS AND DARKNESS: RELATIONS TO NEURONAL RECEPTIVE FIELDS , 1990 .

[98]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .

[99]  L. Sharpe,et al.  Assimilative hue shifts in color gratings depend on bar width. , 1986, Perception & psychophysics.

[100]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[101]  J. Moran,et al.  Sensation and perception , 1980 .

[102]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[103]  D J Tolhurst,et al.  On the possible existance of edge detector neurones in the human visual system. , 1972, Vision Research.

[104]  H. Helson Studies of anomalous contrast and assimilation. , 1963, Journal of the Optical Society of America.

[105]  Vision Research , 1961, Nature.

[106]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .