Evidence for the weak coupling scenario of the Peierls transition in the blue bronze

This work was supported by Spanish MINECO (the Severo Ochoa Centers of Excellence Program under Grants No. SEV-2017-0706 and No. SEV-2015-0496), Spanish MICIU, AEI and EU FEDER (Grants No. PGC2018-096955-B-C43 and No. PGC2018-096955-B-C44), Generalitat de Catalunya (Grant No. 2017SGR1506 and the CERCA Programme), and the European Union MaX Center of Excellence (EU-H2020 Grant No. 824143).

[1]  J. Pouget,et al.  Donor–anion interactions in quarter-filled low-dimensional organic conductors , 2018 .

[2]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[3]  J. Pouget,et al.  Evidence for a Peierls transition in the blue bronzes K0.30MoO 3 and Rb0.30MoO3 , 1983 .

[4]  S. Barǐsić SELF-CONSISTENT ELECTRON--PHONON COUPLING IN THE TIGHT-BINDING APPROXIMATION. II. , 1972 .

[5]  L. Forró,et al.  Mobile small polarons and the Peierls transition in the quasi-one-dimensional conductor K0.3MoO3 , 2002 .

[6]  J. Pouget,et al.  Peierls transition in two-dimensional metallic monophosphate tungsten bronzes , 2002 .

[7]  G. Toombs Quasi-one-dimensional conductors , 1978 .

[8]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[9]  J. Bray,et al.  Theory of fluctuation superconductivity from electron-phonon interactions in pseudo-one-dimensional systems , 1974 .

[10]  K. Nassau,et al.  Neutron scattering study of the ferroelectric phase transition of SbSI , 1978 .

[11]  Analysis of scanning tunneling microscopy images of the charge-density-wave phase in quasi-one-dimensionalRb0.3MoO3 , 2006, cond-mat/0606694.

[12]  Massimo Marezio,et al.  Crystal structure, dimensionality, and 4d electron distribution in K0.30MoO3 and Rb0.30MoO3 , 1985 .

[13]  Pouget,et al.  Neutron-scattering investigations of the Kohn anomaly and of the phase and amplitude charge-density-wave excitations of the blue bronze K0.3MoO3. , 1991, Physical review. B, Condensed matter.

[14]  P. Anderson,et al.  Fluctuation Effects at a Peierls Transition , 1973 .

[15]  ARPES line shapes in FL and non-FL quasi-low-dimensional inorganic metals , 2001, cond-mat/0103470.

[16]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[17]  Sheu,et al.  Determination of the structural distortions corresponding to the q1- and q2-type modulations in niobium triselenide NbSe3. , 1992, Physical review. B, Condensed matter.

[18]  A. Ottolenghi,et al.  Evidence of High Critical Temperature Charge Density Wave Transitions in the (PO2)4(WO3)2m Family of Low Dimensional Conductors for m ${\bf\geq}$ 8 , 1996 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  B. Hennion,et al.  Neutron and X Ray Studies of The Quasi One Dimensional Conductor K0 3Mo03 , 1985 .

[21]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[22]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Pouget,et al.  Critical x-ray scattering at the Peierls transition of the blue bronze. , 1989, Physical review. B, Condensed matter.

[24]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[25]  J. Boer,et al.  The incommensurately modulated structures of the blue bronzes K0.3MoO3 and Rb0.3MoO3 , 1993 .

[26]  K. Rossnagel On the origin of charge-density waves in select layered transition-metal dichalcogenides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  C. Noguera,et al.  Temperature dependence of the Peierls wavevector in quasi one dimensional conductors , 1991 .

[28]  P. Wachter,et al.  CDW evidence in one-dimensional K0.3MoO3 by means of Raman scattering , 1983 .

[29]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[30]  P. Monceau Electronic crystals: an experimental overview , 2012, 1307.0929.

[31]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[32]  Perry,et al.  Inelastic neutron scattering study of anharmonic interactions in orthorhombic KNbO3. , 1989, Physical review. B, Condensed matter.

[33]  Peter D. Johnson,et al.  Recent high resolution photoemission studies of electronic structure in quasi-one-dimensional conductors , 2001 .

[34]  H. Takagi,et al.  Angle-resolved photoemission study of K0.3MoO3: direct observation of temperature-dependent Fermi surface across the Peierls transition , 2005 .

[35]  G. Shirane,et al.  Neutron-Scattering Analysis of the Linear-Displacement Correlations in KTa O 3 , 1972 .

[36]  M. Whangbo,et al.  Band Electronic Structure of the Molybdenum Blue Bronze A0.30MoO3(A = K, Rb) , 1986 .

[37]  Pouget,et al.  Charge-density-wave phase elasticity of the blue bronze. , 1992, Physical review letters.

[38]  I. I. Mazin,et al.  Fermi surface nesting and the origin of charge density waves in metals , 2007, 0708.1744.

[39]  J. Pouget The Peierls instability and charge density wave in one-dimensional electronic conductors , 2016 .

[40]  M. Whangbo,et al.  Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides , 1991 .

[41]  R. Currat,et al.  Inelastic neutron scattering in orthorhombic KNbO3 , 1974 .

[42]  P. Ordejón,et al.  First-principles study of the blue bronze K 0.3 MoO 3 , 2002 .

[43]  Ralph Claessen,et al.  Fermi surfaces and single-particle spectral functions of low-dimensional inorganic non-cuprate compounds: the molybdenum bronzes , 1996 .

[44]  J. Pouget,et al.  Charge Density Wave Transitions in Two-Dimensional Transition Metal Bronzes and Oxides , 1993 .

[45]  Efthimios Kaxiras,et al.  ACRES: An Efficient Method for First-Principles Electronic Structure Calculations of Complex Systems , 2000 .

[46]  A. D. Wadsley,et al.  The crystal structure of the blue potassium molybdenum bronze, K0.28MoO3 , 1966 .

[47]  Xingjiang Zhou,et al.  Charge-density wave and one-dimensional electronic spectra in blue bronze: Incoherent solitons and spin-charge separation , 2012, 1207.7066.

[48]  Cañadell,et al.  Charge-density-wave instabilities expected in monophosphate tungsten bronzes. , 1991, Physical review. B, Condensed matter.

[49]  R. Currat,et al.  Dynamics in the charge-density-wave system NbSe 3 using inelastic x-ray scattering with meV energy resolution , 2002 .

[50]  K. Bohnen,et al.  Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. , 2011, Physical review letters.

[51]  S. Barǐsić RIGID-ATOM ELECTRON--PHONON COUPLING IN THE TIGHT-BINDING APPROXIMATION. I. , 1972 .

[52]  R. Currat,et al.  Inelastic x-ray scattering study of charge-density-wave dynamics in the Rb 0.3 MoO 3 blue bronze , 2004 .

[53]  P. Wachter,et al.  The blue bronze K0.3MoO3: A new one-dimensional conductor , 1981 .

[54]  É. Sandré,et al.  Ab initio fermi surface calculation for charge-density wave instability in transition metal oxide bronzes. , 2001, Physical review letters.

[55]  W. Lomer Electronic Structure of Chromium Group Metals , 1962 .

[56]  A. Said,et al.  Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbT e 3 , 2014, 1410.7592.

[57]  M. Grioni,et al.  Recent ARPES experiments on quasi-1D bulk materials and artificial structures , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.