Pseudo-Hermitian Representation of Quantum Mechanics

A diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used to define a unitary quantum system, if one modifies the inner product of the Hilbert space properly. We give a comprehensive and essentially self-contained review of the basic ideas and techniques responsible for the recent developments in this subject. We provide a critical assessment of the role of the geometry of the Hilbert space in conventional quantum mechanics to reveal the basic physical principle motivating our study. We then offer a survey of the necessary mathematical tools, present their utility in establishing a lucid and precise formulation of a unitary quantum theory based on a non-Hermitian Hamiltonian, and elaborate on a number of relevant issues of fundamental importance. In particular, we discuss the role of the antilinear symmetries such as ${\mathcal{P}\mathcal{T}}$, the true meaning and significance of the so-called charge operators $\mathcal{C}$ and the ${\mathcal{C}\mathcal{P}\mathcal{T}}$-inner products,...

[1]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[2]  V. Buslaev,et al.  Equivalence of unstable anharmonic oscillators and double wells , 1993 .

[3]  E. Caliceti,et al.  Perturbation theory of odd anharmonic oscillators , 1980 .

[4]  Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.

[5]  Peter D. Lax,et al.  Symmetrizable linear transformations , 1954 .

[6]  K. Nagy State vector spaces with indefinite metric in quantum field theory , 1966 .

[7]  Biorthogonal quantum systems , 2005, quant-ph/0507015.

[8]  Abe Shenitzer,et al.  Linear operators in Hilbert space , 1965 .

[9]  Tatsuhiko Koike,et al.  Time-optimal quantum evolution. , 2006, Physical review letters.

[10]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[11]  A. Andrianov,et al.  Non-Hermitian quantum mechanics of non-diagonalizable Hamiltonians: puzzles with self-orthogonal states , 2006, quant-ph/0602207.

[12]  On Hamiltonian dynamics , 1970 .

[13]  B. P. Jensen,et al.  The Global Approach to Quantum Field Theory , 2003 .

[14]  Isospectrality of spherical MHD dynamo operators: Pseudo-hermiticity and a no-go theorem , 2002, math-ph/0208012.

[15]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[16]  B. Eslami-Mossallam,et al.  Stretching an anisotropic DNA. , 2008, The Journal of chemical physics.

[17]  이현주 Q. , 2005 .

[18]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[19]  Hamiltonians generating optimal-speed evolutions , 2008, 0804.4755.

[20]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[21]  C. Bender,et al.  Erratum: Complex Extension of Quantum Mechanics [Phys. Rev. Lett.89, 270401 (2002)] , 2004 .

[22]  E. Hille,et al.  Lectures on ordinary differential equations , 1968 .

[23]  Mark S. Swanson,et al.  Transition elements for a non-Hermitian quadratic Hamiltonian , 2004 .

[24]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[25]  A. Mostafazadeh Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries , 2002, math-ph/0209018.

[26]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[27]  S. Stenholm,et al.  Effects of a thermal reservoir on variational functions in open systems (18 pages) , 2004 .

[28]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  Is weak pseudo-Hermiticity weaker than pseudo-Hermiticity? , 2006, quant-ph/0605110.

[31]  J. Dankovicová Czech , 1997, Journal of the International Phonetic Association.

[32]  E. Demiralp,et al.  Bound state solutions of the Schrödinger equation for a PT-symmetric potential with Dirac delta functions , 2006 .

[33]  E. Wigner Normal Form of Antiunitary Operators , 1960 .

[34]  Quasi-Hermitian quantum mechanics in phase space , 2007, quant-ph/0701006.

[35]  Symmetrizable completely continuous linear transformations in Hilbert space , 1951 .

[36]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[37]  PT-symmetric Quantum Mechanics: A Precise and Consistent Formulation , 2004, quant-ph/0407213.

[38]  M. Znojil,et al.  MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator , 2005, math-ph/0501069.

[39]  Operator equations and Moyal products–metrics in quasi-Hermitian quantum mechanics , 2005, quant-ph/0512055.

[40]  Freeman J. Dyson,et al.  General Theory of Spin-Wave Interactions , 1956 .

[41]  Eugene P. Wigner,et al.  Localized States for Elementary Systems , 1949 .

[42]  B. Samsonov,et al.  Dynamical qubit controlling via pseudo-supersymmetry of two-level systems , 2008 .

[43]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[44]  A. Mostafazadeh,et al.  Application of pseudo-Hermitian quantum mechanics to a complex scattering potential with point interactions , 2010, 1002.1221.

[45]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[46]  Andrew J. Hanson,et al.  Gravitation, Gauge Theories and Differential Geometry , 1980 .

[47]  W. Pauli On Dirac's New Method of Field Quantization , 1943 .

[48]  Extension of PT -Symmetric Quantum Mechanics to Quantum Field Theory with Cubic Interaction , 2004 .

[49]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[50]  C. Bender,et al.  No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. , 2007, Physical review letters.

[51]  A. Mostafazadeh Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. , 2009, Physical review letters.

[52]  M. Berry,et al.  Generalized PT symmetry and real spectra , 2002 .

[53]  E. Cheney Analysis for Applied Mathematics , 2001 .

[54]  B. Bagchi,et al.  Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition , 2002, quant-ph/0206055.

[55]  J-self-adjoint operators with \mathcal{C} -symmetries: an extension theory approach , 2008, 0811.0365.

[56]  R. Haag,et al.  Local quantum physics , 1992 .

[57]  M. Shubin Partial Differential Equations VII : Spectral Theory of Differential Operators , 1994 .

[58]  J. G. Muga,et al.  Complex absorbing potentials , 2004 .

[59]  R. Wald Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .

[60]  P. Halmos A Hilbert Space Problem Book , 1967 .

[61]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[62]  Pseudounitary symmetry and the Gaussian pseudounitary ensemble of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  S. Deser The Global Approach to Quantum Field Theory , 2003 .

[64]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[65]  A. Mostafazadeh Application of pseudo-Hermitian quantum mechanics to a PT-symmetric Hamiltonian with a continuum of scattering states , 2005, quant-ph/0506094.

[66]  N. Nakanishi Indefinite-Metric Quantum Field Theory , 1972 .

[67]  J. Bognár,et al.  Indefinite Inner Product Spaces , 1974 .

[68]  J. Fell,et al.  Basic representation theory of groups and algebras , 1988 .

[69]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[70]  F. Strocchi,et al.  COMPLEX COORDINATES AND QUANTUM MECHANICS , 1966 .

[71]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[72]  G. Scolarici,et al.  On the pseudo-Hermitian nondiagonalizable Hamiltonians , 2002, quant-ph/0211161.

[73]  C. Bender Introduction to 𝒫𝒯-symmetric quantum theory , 2005, quant-ph/0501052.

[74]  Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics , 2004, quant-ph/0408132.

[75]  A. Mostafazadeh Quantum Brachistochrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics. , 2007, Physical review letters.

[76]  Finite-dimensional PT-symmetric Hamiltonians , 2003, quant-ph/0303174.

[77]  H. Feshbach,et al.  Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles , 1958 .

[78]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[79]  W. Heiss,et al.  Choice of a metric for the non-Hermitian oscillator , 2006 .

[80]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[81]  S. Ghosh,et al.  Crypto-harmonic oscillator in higher dimensions: classical and quantum aspects , 2007, 0709.4325.

[82]  The connection between the rigged Hilbert space and the complex scaling approaches for resonances. The Friedrichs model , 2001 .

[83]  Equivalent Hermitian Hamiltonian for the non-Hermitian -x 4 potential , 2006, quant-ph/0601188.

[84]  Saverio Pascazio,et al.  The Geometric Phase in Quantum Systems , 2003 .

[85]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.

[86]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[87]  J. Kimball,et al.  Localization and causality for a free particle , 2003 .

[88]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[89]  Z. Ahmed,et al.  Gaussian ensemble of 2 × 2 pseudo-Hermitian random matrices , 2003 .

[90]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[91]  Vasile I. Istratescu,et al.  Introduction to Linear Operator Theory , 1981 .

[92]  A. Mostafazadeh,et al.  Propagation of electromagnetic waves in linear media and pseudo-hermiticity , 2007, physics/0703080.

[93]  S. Fei,et al.  Point Interactions: $$\mathcal{P}\mathcal{T}$$ -Hermiticity and Reality of the Spectrum , 2002 .

[94]  H. B. Geyer,et al.  Quasi-hermiticity and the Role of a Metric in Some Boson Hamiltonians , 2004 .

[95]  A. Fring,et al.  Time evolution of non-Hermitian Hamiltonian systems , 2006, quant-ph/0604014.

[96]  K. Case Some Generalizations of the Foldy-Wouthuysen Transformation , 1954 .

[97]  On the dynamical invariants and the geometric phases for a general spin system in a changing magnetic field , 2001, quant-ph/0107063.

[98]  J. Elliott,et al.  Symmetry in physics , 1979 .

[99]  Hiroyasu Koizumi,et al.  The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics , 2003 .

[100]  Isospectral Hamiltonians from Moyal products , 2006, quant-ph/0607154.

[101]  Paul Adrien Maurice Dirac,et al.  Lectures on Quantum Mechanics , 2001 .

[102]  Tosio Kato Perturbation theory for linear operators , 1966 .

[103]  M. Pryce The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[104]  渋谷 泰隆 Global theory of a second order linear ordinary differential equation with a polynomial coefficient , 1975 .

[105]  P. Roy,et al.  Spontaneous symmetry breaking and pseudo-supersymmetry , 2006 .

[106]  Y. Ben-Aryeh Quasi-Hermitian Hamiltonians, minimum-uncertainty (MU) angular momentum states and interferometers , 2008 .

[107]  Hilbert space structures on the solution space of Klein-Gordon type evolution equations , 2002, math-ph/0209014.

[108]  Y. Berezansky,et al.  Functional Analysis: Vol. I , 1996 .

[109]  Lev Vaidman,et al.  Minimum time for the evolution to an orthogonal quantum state , 1992 .

[110]  L. Solombrino Weak pseudo-Hermiticity and antilinear commutant , 2002 .

[111]  P. Löwdin On the Change of Spectra Associated with Unbounded Similarity Transformations of a Many-Particle Hamiltonian and the Occurrence of Resonance States in the Method of Complex Scaling. Part I. General Theory , 1988 .

[112]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[113]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[114]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[115]  A. Mostafazadeh Pseudounitary operators and pseudounitary quantum dynamics , 2003, math-ph/0302050.

[116]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[117]  Gerald V. Dunne,et al.  Large-order Perturbation Theory for a Non-Hermitian PT-symmetric Hamiltonian , 1999 .

[118]  Two-Component Formulation of the Wheeler-DeWitt Equation for FRW-Massive Scalar Field Minisuperspace , 1996, gr-qc/9610012.

[119]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[120]  Non-Hermiticity, Boson Realizations, and the Role of a Physical Subspace , 2004 .

[121]  Ashok Das,et al.  Field Theory: A Path Integral Approach , 1993 .

[122]  C. Isham,et al.  Modern Differential Geometry For Physicists , 1989 .

[123]  R. Jolos,et al.  Boson description of collective states: (I). Derivation of the boson transformation for even fermion systems , 1971 .

[124]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[125]  Sebastian F. Brandt,et al.  Ghost Busting: PT-Symmetric Interpretation of the Lee Model , 2005 .

[126]  Differential Realization of Pseudo-Hermiticity: A quantum mechanical analog of Einstein's field equation , 2006, quant-ph/0603023.

[127]  PT symmetric models with nonlinear pseudosupersymmetry , 2005, quant-ph/0505221.

[128]  R. Tateo,et al.  Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .

[129]  Marshall C. Pease,et al.  Methods of Matrix Algebra. , 1967 .

[130]  Yacob Ben-Aryeh,et al.  Rabi oscillations in a two-level atomic system with a pseudo-Hermitian Hamiltonian , 2004 .

[131]  Dorje C. Brody,et al.  Must a Hamiltonian be Hermitian , 2003, hep-th/0303005.

[132]  J. Sjöstrand,et al.  symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum , 2007 .

[133]  V. Sadovnichii Theory of operators , 1991 .

[134]  J. Sjoestrand,et al.  Spectra of PT-symmetric operators and perturbation theory , 2004, math-ph/0407052.

[135]  Steven Roman Advanced Linear Algebra , 1992 .

[136]  M. Rieffel,et al.  Representations of ∗ -Algebras, Locally Compact Groups, and Banach ∗ -Algebraic Bundles, I, II. , 1990 .

[137]  B. M. Fulk MATH , 1992 .

[138]  M. Gasymov Spectral analysis of a class of second-order non-self-adjoint differential operators , 1980 .

[139]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[140]  A. Mostafazadeh,et al.  Quantum mechanics of Proca fields , 2008, 0805.1651.

[141]  Dorje C Brody,et al.  Faster than Hermitian quantum mechanics. , 2007, Physical review letters.

[142]  Closed formula for the metric in the Hilbert space of a -symmetric model , 2006, math-ph/0604055.

[143]  PT-SYMMETRIC SQUARE WELL AND THE ASSOCIATED SUSY HIERARCHIES , 2002, quant-ph/0205003.