Pseudo-Hermitian Representation of Quantum Mechanics
暂无分享,去创建一个
[1] Dorje C Brody,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[2] V. Buslaev,et al. Equivalence of unstable anharmonic oscillators and double wells , 1993 .
[3] E. Caliceti,et al. Perturbation theory of odd anharmonic oscillators , 1980 .
[4] Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.
[5] Peter D. Lax,et al. Symmetrizable linear transformations , 1954 .
[6] K. Nagy. State vector spaces with indefinite metric in quantum field theory , 1966 .
[7] Biorthogonal quantum systems , 2005, quant-ph/0507015.
[8] Abe Shenitzer,et al. Linear operators in Hilbert space , 1965 .
[9] Tatsuhiko Koike,et al. Time-optimal quantum evolution. , 2006, Physical review letters.
[10] R. A. Silverman,et al. Introductory Real Analysis , 1972 .
[11] A. Andrianov,et al. Non-Hermitian quantum mechanics of non-diagonalizable Hamiltonians: puzzles with self-orthogonal states , 2006, quant-ph/0602207.
[12] On Hamiltonian dynamics , 1970 .
[13] B. P. Jensen,et al. The Global Approach to Quantum Field Theory , 2003 .
[14] Isospectrality of spherical MHD dynamo operators: Pseudo-hermiticity and a no-go theorem , 2002, math-ph/0208012.
[15] David R. Nelson,et al. Vortex pinning and non-Hermitian quantum mechanics , 1997 .
[16] B. Eslami-Mossallam,et al. Stretching an anisotropic DNA. , 2008, The Journal of chemical physics.
[18] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[19] Hamiltonians generating optimal-speed evolutions , 2008, 0804.4755.
[20] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[21] C. Bender,et al. Erratum: Complex Extension of Quantum Mechanics [Phys. Rev. Lett.89, 270401 (2002)] , 2004 .
[22] E. Hille,et al. Lectures on ordinary differential equations , 1968 .
[23] Mark S. Swanson,et al. Transition elements for a non-Hermitian quadratic Hamiltonian , 2004 .
[24] Aharonov,et al. Geometry of quantum evolution. , 1990, Physical review letters.
[25] A. Mostafazadeh. Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries , 2002, math-ph/0209018.
[26] Israel Michael Sigal,et al. Introduction to Spectral Theory , 1996 .
[27] S. Stenholm,et al. Effects of a thermal reservoir on variational functions in open systems (18 pages) , 2004 .
[28] L. Ryder,et al. Quantum Field Theory , 2001, Foundations of Modern Physics.
[29] Ericka Stricklin-Parker,et al. Ann , 2005 .
[30] Is weak pseudo-Hermiticity weaker than pseudo-Hermiticity? , 2006, quant-ph/0605110.
[31] J. Dankovicová. Czech , 1997, Journal of the International Phonetic Association.
[32] E. Demiralp,et al. Bound state solutions of the Schrödinger equation for a PT-symmetric potential with Dirac delta functions , 2006 .
[33] E. Wigner. Normal Form of Antiunitary Operators , 1960 .
[34] Quasi-Hermitian quantum mechanics in phase space , 2007, quant-ph/0701006.
[35] Symmetrizable completely continuous linear transformations in Hilbert space , 1951 .
[36] Nelson,et al. Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.
[37] PT-symmetric Quantum Mechanics: A Precise and Consistent Formulation , 2004, quant-ph/0407213.
[38] M. Znojil,et al. MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator , 2005, math-ph/0501069.
[39] Operator equations and Moyal products–metrics in quasi-Hermitian quantum mechanics , 2005, quant-ph/0512055.
[40] Freeman J. Dyson,et al. General Theory of Spin-Wave Interactions , 1956 .
[41] Eugene P. Wigner,et al. Localized States for Elementary Systems , 1949 .
[42] B. Samsonov,et al. Dynamical qubit controlling via pseudo-supersymmetry of two-level systems , 2008 .
[43] R. Xu,et al. Theory of open quantum systems , 2002 .
[44] A. Mostafazadeh,et al. Application of pseudo-Hermitian quantum mechanics to a complex scattering potential with point interactions , 2010, 1002.1221.
[45] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[46] Andrew J. Hanson,et al. Gravitation, Gauge Theories and Differential Geometry , 1980 .
[47] W. Pauli. On Dirac's New Method of Field Quantization , 1943 .
[48] Extension of PT -Symmetric Quantum Mechanics to Quantum Field Theory with Cubic Interaction , 2004 .
[49] L. Infeld. Quantum Theory of Fields , 1949, Nature.
[50] C. Bender,et al. No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. , 2007, Physical review letters.
[51] A. Mostafazadeh. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. , 2009, Physical review letters.
[52] M. Berry,et al. Generalized PT symmetry and real spectra , 2002 .
[53] E. Cheney. Analysis for Applied Mathematics , 2001 .
[54] B. Bagchi,et al. Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition , 2002, quant-ph/0206055.
[55] J-self-adjoint operators with \mathcal{C} -symmetries: an extension theory approach , 2008, 0811.0365.
[56] R. Haag,et al. Local quantum physics , 1992 .
[57] M. Shubin. Partial Differential Equations VII : Spectral Theory of Differential Operators , 1994 .
[58] J. G. Muga,et al. Complex absorbing potentials , 2004 .
[59] R. Wald. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .
[60] P. Halmos. A Hilbert Space Problem Book , 1967 .
[61] Paul Adrien Maurice Dirac,et al. Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[62] Pseudounitary symmetry and the Gaussian pseudounitary ensemble of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[63] S. Deser. The Global Approach to Quantum Field Theory , 2003 .
[64] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[65] A. Mostafazadeh. Application of pseudo-Hermitian quantum mechanics to a PT-symmetric Hamiltonian with a continuum of scattering states , 2005, quant-ph/0506094.
[66] N. Nakanishi. Indefinite-Metric Quantum Field Theory , 1972 .
[67] J. Bognár,et al. Indefinite Inner Product Spaces , 1974 .
[68] J. Fell,et al. Basic representation theory of groups and algebras , 1988 .
[69] Francesco Petruccione,et al. The Theory of Open Quantum Systems , 2002 .
[70] F. Strocchi,et al. COMPLEX COORDINATES AND QUANTUM MECHANICS , 1966 .
[71] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[72] G. Scolarici,et al. On the pseudo-Hermitian nondiagonalizable Hamiltonians , 2002, quant-ph/0211161.
[73] C. Bender. Introduction to 𝒫𝒯-symmetric quantum theory , 2005, quant-ph/0501052.
[74] Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics , 2004, quant-ph/0408132.
[75] A. Mostafazadeh. Quantum Brachistochrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics. , 2007, Physical review letters.
[76] Finite-dimensional PT-symmetric Hamiltonians , 2003, quant-ph/0303174.
[77] H. Feshbach,et al. Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles , 1958 .
[78] J. Neumann. Mathematical Foundations of Quantum Mechanics , 1955 .
[79] W. Heiss,et al. Choice of a metric for the non-Hermitian oscillator , 2006 .
[80] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[81] S. Ghosh,et al. Crypto-harmonic oscillator in higher dimensions: classical and quantum aspects , 2007, 0709.4325.
[82] The connection between the rigged Hilbert space and the complex scaling approaches for resonances. The Friedrichs model , 2001 .
[83] Equivalent Hermitian Hamiltonian for the non-Hermitian -x 4 potential , 2006, quant-ph/0601188.
[84] Saverio Pascazio,et al. The Geometric Phase in Quantum Systems , 2003 .
[85] A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.
[86] B. Dewitt. Quantum Theory of Gravity. I. The Canonical Theory , 1967 .
[87] J. Kimball,et al. Localization and causality for a free particle , 2003 .
[88] C. Bender,et al. PT-symmetric quantum mechanics , 1998, 2312.17386.
[89] Z. Ahmed,et al. Gaussian ensemble of 2 × 2 pseudo-Hermitian random matrices , 2003 .
[90] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[91] Vasile I. Istratescu,et al. Introduction to Linear Operator Theory , 1981 .
[92] A. Mostafazadeh,et al. Propagation of electromagnetic waves in linear media and pseudo-hermiticity , 2007, physics/0703080.
[93] S. Fei,et al. Point Interactions: $$\mathcal{P}\mathcal{T}$$ -Hermiticity and Reality of the Spectrum , 2002 .
[94] H. B. Geyer,et al. Quasi-hermiticity and the Role of a Metric in Some Boson Hamiltonians , 2004 .
[95] A. Fring,et al. Time evolution of non-Hermitian Hamiltonian systems , 2006, quant-ph/0604014.
[96] K. Case. Some Generalizations of the Foldy-Wouthuysen Transformation , 1954 .
[97] On the dynamical invariants and the geometric phases for a general spin system in a changing magnetic field , 2001, quant-ph/0107063.
[98] J. Elliott,et al. Symmetry in physics , 1979 .
[99] Hiroyasu Koizumi,et al. The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics , 2003 .
[100] Isospectral Hamiltonians from Moyal products , 2006, quant-ph/0607154.
[101] Paul Adrien Maurice Dirac,et al. Lectures on Quantum Mechanics , 2001 .
[102] Tosio Kato. Perturbation theory for linear operators , 1966 .
[103] M. Pryce. The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[104] 渋谷 泰隆. Global theory of a second order linear ordinary differential equation with a polynomial coefficient , 1975 .
[105] P. Roy,et al. Spontaneous symmetry breaking and pseudo-supersymmetry , 2006 .
[106] Y. Ben-Aryeh. Quasi-Hermitian Hamiltonians, minimum-uncertainty (MU) angular momentum states and interferometers , 2008 .
[107] Hilbert space structures on the solution space of Klein-Gordon type evolution equations , 2002, math-ph/0209014.
[108] Y. Berezansky,et al. Functional Analysis: Vol. I , 1996 .
[109] Lev Vaidman,et al. Minimum time for the evolution to an orthogonal quantum state , 1992 .
[110] L. Solombrino. Weak pseudo-Hermiticity and antilinear commutant , 2002 .
[111] P. Löwdin. On the Change of Spectra Associated with Unbounded Similarity Transformations of a Many-Particle Hamiltonian and the Occurrence of Resonance States in the Method of Complex Scaling. Part I. General Theory , 1988 .
[112] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[113] Z. Musslimani,et al. Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.
[114] Marion Kee,et al. Analysis , 2004, Machine Translation.
[115] A. Mostafazadeh. Pseudounitary operators and pseudounitary quantum dynamics , 2003, math-ph/0302050.
[116] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[117] Gerald V. Dunne,et al. Large-order Perturbation Theory for a Non-Hermitian PT-symmetric Hamiltonian , 1999 .
[118] Two-Component Formulation of the Wheeler-DeWitt Equation for FRW-Massive Scalar Field Minisuperspace , 1996, gr-qc/9610012.
[119] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[120] Non-Hermiticity, Boson Realizations, and the Role of a Physical Subspace , 2004 .
[121] Ashok Das,et al. Field Theory: A Path Integral Approach , 1993 .
[122] C. Isham,et al. Modern Differential Geometry For Physicists , 1989 .
[123] R. Jolos,et al. Boson description of collective states: (I). Derivation of the boson transformation for even fermion systems , 1971 .
[124] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[125] Sebastian F. Brandt,et al. Ghost Busting: PT-Symmetric Interpretation of the Lee Model , 2005 .
[126] Differential Realization of Pseudo-Hermiticity: A quantum mechanical analog of Einstein's field equation , 2006, quant-ph/0603023.
[127] PT symmetric models with nonlinear pseudosupersymmetry , 2005, quant-ph/0505221.
[128] R. Tateo,et al. Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .
[129] Marshall C. Pease,et al. Methods of Matrix Algebra. , 1967 .
[130] Yacob Ben-Aryeh,et al. Rabi oscillations in a two-level atomic system with a pseudo-Hermitian Hamiltonian , 2004 .
[131] Dorje C. Brody,et al. Must a Hamiltonian be Hermitian , 2003, hep-th/0303005.
[132] J. Sjöstrand,et al. symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum , 2007 .
[133] V. Sadovnichii. Theory of operators , 1991 .
[134] J. Sjoestrand,et al. Spectra of PT-symmetric operators and perturbation theory , 2004, math-ph/0407052.
[135] Steven Roman. Advanced Linear Algebra , 1992 .
[136] M. Rieffel,et al. Representations of ∗ -Algebras, Locally Compact Groups, and Banach ∗ -Algebraic Bundles, I, II. , 1990 .
[137] B. M. Fulk. MATH , 1992 .
[138] M. Gasymov. Spectral analysis of a class of second-order non-self-adjoint differential operators , 1980 .
[139] Carl M. Bender,et al. Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.
[140] A. Mostafazadeh,et al. Quantum mechanics of Proca fields , 2008, 0805.1651.
[141] Dorje C Brody,et al. Faster than Hermitian quantum mechanics. , 2007, Physical review letters.
[142] Closed formula for the metric in the Hilbert space of a -symmetric model , 2006, math-ph/0604055.
[143] PT-SYMMETRIC SQUARE WELL AND THE ASSOCIATED SUSY HIERARCHIES , 2002, quant-ph/0205003.