Introducing k-point parallelism into VASP

For many years ab initio electronic structure calculations based upon density functional theory have been one of the main application areas in high performance computing (HPC). Typically, the Kohn–Sham equations are solved by minimisation of the total energy functional, using a plane wave basis set for valence electrons and pseudopotentials to obviate the representation of core states. One of the best known and widely used software for performing this type of calculation is the Vienna Ab initio Simulation Package, VASP, which currently offers a parallelisation strategy based on the distribution of bands and plane wave coefficients over the machine processors. We report here an improved parallelisation strategy that also distributes the k-point sampling workload over different processors, allowing much better scalability for massively parallel computers. As a result, some difficult problems requiring large k-point sampling become tractable in current computing facilities. We showcase three important applications: dielectric function of epitaxially strained indium oxide, solution energies of tetravalent dopants in metallic VO2, and hydrogen on graphene.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  A. Walsh,et al.  Physical Properties, Intrinsic Defects, and Phase Stability of Indium Sesquioxide , 2009 .

[3]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[4]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[5]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[6]  P. Ngoepe,et al.  Electronic Structure and Redox Properties of the Ti-Doped Zirconia (111) Surface , 2010 .

[7]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[8]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[9]  A. Walsh,et al.  Control of the band-gap states of metal oxides by the application of epitaxial strain: The case of indium oxide , 2011 .

[10]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[11]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[12]  N. H. Leeuw,et al.  Redox properties of gold-substituted zirconia surfaces , 2009 .

[13]  T. Fisher,et al.  Thermodynamics of hydrogen vacancies in MgH2 from first-principles calculations and grand-canonical statistical mechanics , 2009, 0910.4331.

[14]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[15]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[16]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[17]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[18]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[19]  Friedhelm Bechstedt,et al.  Optical properties of semiconductors using projector-augmented waves , 2001 .

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  C. Körber,et al.  Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. , 2008, Physical review letters.

[22]  A. Becke Density-functional thermochemistry. , 1996 .

[23]  Extended atomic hydrogen dimer configurations on the graphite(0001) surface. , 2009, The Journal of chemical physics.

[24]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[25]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[26]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[27]  U. Waghmare,et al.  Phase separation and surface segregation in ceria–zirconia solid solutions , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[29]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[30]  Claes-Göran Granqvist,et al.  Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature , 2009 .

[31]  James D. Tupac Afips conference proceedings , 1963 .

[32]  Ricardo Grau-Crespo,et al.  Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  Tang,et al.  Local atomic and electronic arrangements in WxV1-xO2. , 1985, Physical Review B (Condensed Matter).

[34]  S. Woodley,et al.  The Displacive Phase Transition of Vanadium Dioxide and the Effect of Doping with Tungsten , 2008 .

[35]  Volker Heine,et al.  The Fitting of Pseudopotentials to Experimental Data and Their Subsequent Application , 1970 .

[36]  Georg Kresse,et al.  Dielectric properties and excitons for extended systems from hybrid functionals , 2008 .

[37]  S. Woodley The mechanism of the displacive phase transition in vanadium dioxide , 2008 .

[38]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[39]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Yanfeng Gao,et al.  Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition , 2011 .

[42]  A. Walsh,et al.  Electronic structure of In2O3 and Sn-doped In2O3 by hard x-ray photoemission spectroscopy , 2010 .

[43]  Bruno K. Meyer,et al.  Tungsten and fluorine co-doping of VO2 films , 2002 .

[44]  I. Parkin,et al.  Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6 , 2004 .

[45]  J. C. Phillips,et al.  Energy-Band Interpolation Scheme Based on a Pseudopotential , 1958 .

[46]  Ian J. Bush The view from the high end fortran, parallelism and the HECToR service , 2010, FORF.

[47]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[48]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[49]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[50]  B. G. Searle,et al.  Parallel implementation of the ab initio CRYSTAL program: electronic structure calculations for periodic systems , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.