Optimal control of piezoceramic actuators

This paper presents the first results of an optimal control approach to piezoceramic actuators. A one-dimensional free energy model for piezoceramics recently proposed by Smith and Seelecke is briefly reviewed first. It is capable of predicting the hysteretic behavior along with the frequency-dependence present in these materials. The model is implemented into an optimal control package, and two exemplary cases are simulated to illustrate these features and the potential of the method.

[1]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .

[2]  Dimitris C. Lagoudas,et al.  Control of SMA actuators in dynamic environments , 1999, Smart Structures.

[3]  John S. Baras,et al.  Optimal Control of Hysteresis in Smart Actuators: A Viscosity Solutions Approach , 2002, HSCC.

[4]  Stefan Seelecke,et al.  Free energy model for piezoceramic materials , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  Wei Chen,et al.  A Model for Simulating Polarization Switching and AF-F Phase Changes in Ferroelectric Ceramics , 1998 .

[6]  Stefan Seelecke,et al.  Simulation and control of SMA actuators , 1999, Smart Structures.

[7]  Gang Tao,et al.  Adaptive Control of Systems with Actuator and Sensor Nonlinearities , 1996 .

[8]  Robert C. Rogers,et al.  Compensation for hysteresis using bivariate Preisach models , 1997, Smart Structures.

[9]  H. F. Tiersten,et al.  An Analytical Description of Slow Hysteresis in Polarized Ferroelectric Ceramic Actuators , 1998 .

[10]  William R. Saunders,et al.  Adaptive Structures: Dynamics and Control , 1998 .

[11]  Xiaobo Tan Control of Smart Actuators , 2002 .

[12]  Vincent Hayward,et al.  Variable structure control of shape memory alloy actuators , 1997 .

[13]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[14]  Stefan Seelecke,et al.  Energy formulation for Preisach models , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[15]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[16]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[17]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[18]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[19]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[20]  Stefan Seelecke,et al.  A unified model for hysteresis in ferroic materials , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[21]  Christof Büskens,et al.  Real-Time Optimal Control of Shape Memory Alloy Actuators in Smart Structures , 2001 .

[22]  M. O. Tokhi,et al.  Active noise control systems , 1987 .

[23]  Ralph C. Smith Inverse compensation for hysteresis in magnetostrictive transducers , 2001 .

[24]  Vincent Hayward,et al.  An approach to reduction of hysteresis in smart materials , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[25]  Ralph C. Smith A Nonlinear Optimal Control Method for Magnetostrictive Actuators , 1998 .

[26]  Joshua R. Smith,et al.  A Free Energy Model for Hysteresis in Ferroelectric Materials , 2003, Journal of Intelligent Material Systems and Structures.

[27]  S. Seeleckei,et al.  Optimal Control Of Beam Structures By Shape Memory Wires , 1970 .

[28]  Seung-Woo Kim,et al.  Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control , 1994 .

[29]  Hartmut Janocha,et al.  Adaptronics and Smart Structures: Basics, Materials, Design, and Applications , 2007 .