The Orbitofrontal Cortex and Ventral Tegmental Area Are Necessary for Learning from Unexpected Outcomes

[1]  Geoffrey Schoenbaum,et al.  The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards , 2008, Nature.

[2]  Colin Camerer,et al.  Dissociating the Role of the Orbitofrontal Cortex and the Striatum in the Computation of Goal Values and Prediction Errors , 2008, The Journal of Neuroscience.

[3]  Lesley K Fellows,et al.  The human ventromedial frontal lobe is critical for learning from negative feedback. , 2008, Brain : a journal of neurology.

[4]  M. Roesch,et al.  Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards , 2007, Nature Neuroscience.

[5]  B. Balleine,et al.  Orbitofrontal Cortex Mediates Outcome Encoding in Pavlovian But Not Instrumental Conditioning , 2007, The Journal of Neuroscience.

[6]  G. Schoenbaum,et al.  Basolateral Amygdala Lesions Abolish Orbitofrontal-Dependent Reversal Impairments , 2007, Neuron.

[7]  J. Kralik,et al.  Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task. , 2006, Cerebral cortex.

[8]  P. Dayan,et al.  Tonic dopamine: opportunity costs and the control of response vigor , 2007, Psychopharmacology.

[9]  M. Roesch,et al.  Abnormal associative encoding in orbitofrontal neurons in cocaine‐experienced rats during decision‐making , 2006, The European journal of neuroscience.

[10]  M. Roesch,et al.  Encoding of Time-Discounted Rewards in Orbitofrontal Cortex Is Independent of Value Representation , 2006, Neuron.

[11]  M. Quirk,et al.  Representation of Spatial Goals in Rat Orbitofrontal Cortex , 2006, Neuron.

[12]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[13]  W. Hauber,et al.  Inactivation of the ventral tegmental area abolished the general excitatory influence of Pavlovian cues on instrumental performance. , 2006, Learning & memory.

[14]  Joseph J. Paton,et al.  The primate amygdala represents the positive and negative value of visual stimuli during learning , 2006, Nature.

[15]  J. O'Doherty,et al.  Human Neural Learning Depends on Reward Prediction Errors in the Blocking Paradigm , 2005, Journal of neurophysiology.

[16]  Alicia Izquierdo,et al.  Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys , 2005, The European journal of neuroscience.

[17]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[18]  W. Pan,et al.  Dopamine Cells Respond to Predicted Events during Classical Conditioning: Evidence for Eligibility Traces in the Reward-Learning Network , 2005, The Journal of Neuroscience.

[19]  Michela Gallagher,et al.  Lesions of Orbitofrontal Cortex Impair Rats' Differential Outcome Expectancy Learning But Not Conditioned Stimulus-Potentiated Feeding , 2005, The Journal of Neuroscience.

[20]  Geoffrey Schoenbaum,et al.  Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex , 2005, Neuron.

[21]  P. Holland,et al.  Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. , 2005, Behavioral neuroscience.

[22]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[23]  E. Murray,et al.  Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency , 2004, The Journal of Neuroscience.

[24]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[25]  E. Rolls,et al.  Reward-related Reversal Learning after Surgical Excisions in Orbito-frontal or Dorsolateral Prefrontal Cortex in Humans , 2004, Journal of Cognitive Neuroscience.

[26]  Geoffrey Schoenbaum,et al.  Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task , 2003, The Journal of Neuroscience.

[27]  V. Brown,et al.  Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat , 2003, Behavioural Brain Research.

[28]  J. Parkinson,et al.  Dissociable Contributions of the Human Amygdala and Orbitofrontal Cortex to Incentive Motivation and Goal Selection , 2003, The Journal of Neuroscience.

[29]  T. Robbins,et al.  Dissociable Contributions of the Orbitofrontal and Infralimbic Cortex to Pavlovian Autoshaping and Discrimination Reversal Learning: Further Evidence for the Functional Heterogeneity of the Rodent Frontal Cortex , 2003, The Journal of Neuroscience.

[30]  J. O'Doherty,et al.  Encoding Predictive Reward Value in Human Amygdala and Orbitofrontal Cortex , 2003, Science.

[31]  Geoffrey Schoenbaum,et al.  Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. , 2003, Learning & memory.

[32]  Geoffrey Schoenbaum,et al.  Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations , 2002, Neuroreport.

[33]  J. O'Doherty,et al.  Neural Responses during Anticipation of a Primary Taste Reward , 2002, Neuron.

[34]  W. Schultz,et al.  Dopamine responses comply with basic assumptions of formal learning theory , 2001, Nature.

[35]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[36]  G. Schoenbaum,et al.  Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning , 1999, The Journal of Neuroscience.

[37]  W. Schultz,et al.  Relative reward preference in primate orbitofrontal cortex , 1999, Nature.

[38]  C. Frith,et al.  Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention , 1999, Nature Neuroscience.

[39]  Sadahiko Nakajima,et al.  Overexpectation in appetitive Pavlovian and instrumental conditioning , 1998 .

[40]  G. Schoenbaum,et al.  Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning , 1998, Nature Neuroscience.

[41]  P. Holland,et al.  Neurotoxic Lesions of Basolateral, But Not Central, Amygdala Interfere with Pavlovian Second-Order Conditioning and Reinforcer Devaluation Effects , 1996, The Journal of Neuroscience.

[42]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[43]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  M. Gallagher,et al.  Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. , 1993, Behavioral neuroscience.

[45]  M. Mishkin,et al.  Limbic lesions and the problem of stimulus--reinforcement associations. , 1972, Experimental neurology.

[46]  W. F. Prokasy,et al.  Classical conditioning II: Current research and theory. , 1972 .

[47]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[48]  R. Rescorla Reduction in the effectiveness of reinforcement after prior excitatory conditioning , 1970 .