A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction

The authors discuss the fabrication, performance, and design of a novel, planar In/sub 0.53/Ga/sub 0.47/ As/InP separate absorption and multiplication region avalanche photodiode (SAM-APD) with floating guard rings and a double Zn diffused junction. The APD, grown by both vapor phase epitaxy and metalorganic vapor phase epitaxy, is observed to have a uniform gain of 85, a minimum primary dark current density of 5*10/sup -6/ A/cm/sup 2/ at 90% of breakdown, and a capacitance of 0.4 pF for a front-side illuminated device. Both experimental and analytical results show that the double-diffused floating guard ring structure prevents edge breakdown, and also greatly reduces the electric field along the semiconductor/insulator surface. The operation mechanisms and the optimum design of the planar APD based on a two-dimensional device model are discussed. >

[1]  Paul P. Webb,et al.  Planar InGaAs/InP avalanche photodiode fabrication using vapor-phase epitaxy and silicon implantation techniques , 1988 .

[2]  T. Mikawa,et al.  Impact ionization coefficients of electrons and holes in , 1985 .

[3]  High sensitivity of VPE-grown InGaAs/InP-heterostructure APD with buffer layer and guard-ring structure , 1984 .

[4]  D. Gay,et al.  Reliability of vapor-grown planar In/sub 0.53/Ga/sub 0.47/As/InP p-i-n photodiodes with very high failure activation energy , 1988, IEEE Electron Device Letters.

[5]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[6]  H. Kawata,et al.  A planar InP/InGaAsP heterostructure avalanche photodiode , 1982, IEEE Transactions on Electron Devices.

[7]  S. Akiba,et al.  Receiver sensitivity of InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers at 1.5-1.6 μm region , 1983 .

[8]  H. Ando,et al.  Characteristics of germanium avalanche photodiodes in the wavelength region of 1-1.6 µm , 1978, IEEE Journal of Quantum Electronics.

[9]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[10]  K. Makita,et al.  Planar InP/InGaAs avalanche photodiodes with preferential lateral extended guard ring , 1986, IEEE Electron Device Letters.

[11]  Yuichi Matsushima,et al.  High-speed-response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers , 1982 .

[12]  Y. Liu,et al.  In/sub 0.53/Ga/sub 0.47/As/InP floating guard ring avalanche photodiodes fabricated by double diffusion , 1990, IEEE Photonics Technology Letters.

[13]  Planar InP/GaInAsP/GaInAs buried‐structure avalanche photodiode , 1984 .

[14]  T. Mikawa,et al.  Multiplication-dependent frequency responses of InP/InGaAs avalanche photodiode , 1984 .

[15]  S. Forrest,et al.  Performance of In 0.53 Ga 0.47 As/InP avalanche photodiodes , 1982 .

[16]  Joe C. Campbell,et al.  High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy , 1988 .

[17]  Detailed performance characteristics of hybrid InP-InGaAsP APD's , 1981, IEEE Electron Device Letters.

[18]  S. R. Forrest Chapter 4 Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems , 1985 .

[19]  G. E. Stillman,et al.  Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements , 1982 .

[20]  H. Ando,et al.  High-speed planar InP/InGaAs avalanche photodiode fabricated by vapour phase epitaxy , 1983 .

[21]  L. Tarof Planar InP-InGaAs avalanche photodetectors with n-multiplication layer exhibiting a very high gain-bandwidth product , 1990, IEEE Photonics Technology Letters.

[22]  S. R. Forrest,et al.  Optical response time of In0.53Ga0.47As/InP avalanche photodiodes , 1982 .

[23]  S. Groves,et al.  TP-C14 ionization coefficients of electrons and holes in InP , 1979, IEEE Transactions on Electron Devices.

[24]  H. Imai,et al.  High-speed distributed feedback laser and InGaAs avalanche photodiodes , 1988 .

[25]  A. J. Moseley,et al.  Measurement of absorption coefficients of Ga 0.47 In 0.53 As over the wavelength range 1.0-1.7 μm , 1985 .

[26]  F. W. Ostermayer,et al.  Planar InP/InGaAsP three-dimensional graded-junction avalanche photodiode , 1987, IEEE Transactions on Electron Devices.

[27]  T. Torikai,et al.  Temperature dependence of impact ionization coefficients in InP , 1986 .

[28]  H. Machida,et al.  Optimized GaInAs avalanche photodiode with low noise and large gain-bandwidth product , 1987 .

[29]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[30]  G. Gibbons,et al.  Effect of junction curvature on breakdown voltage in semiconductors , 1966 .

[31]  J. Pelka,et al.  Blocking capability of planar devices with field limiting rings , 1983 .

[32]  H. Sudo,et al.  Surface degradation mechanism of InP/InGaAs APDs , 1988 .