Fuzzy Clustering for Data Time Arrays With Inlier and Outlier Time Trajectories
暂无分享,去创建一个
[1] R. Shumway,et al. Linear Discriminant Functions for Stationary Time Series , 1974 .
[2] D. Piccolo. A DISTANCE MEASURE FOR CLASSIFYING ARIMA MODELS , 1990 .
[3] Robert H. Shumway,et al. Discrimination and Clustering for Multivariate Time Series , 1998 .
[4] Hichem Frigui,et al. A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Katarina Košmelj. A two‐step procedure for clustering time varying data , 1986 .
[6] Dimitrios Gunopulos,et al. Finding Similar Time Series , 1997, PKDD.
[7] Padhraic Smyth,et al. Clustering Sequences with Hidden Markov Models , 1996, NIPS.
[8] J. Cauquil,et al. Une analyse discriminante sur données longitudinales , 1999 .
[9] Elizabeth Ann Maharaj,et al. Comparison and classification of stationary multivariate time series , 1999, Pattern Recognit..
[10] Claus Svarer,et al. Cluster analysis of activity‐time series in motor learning , 2002, Human brain mapping.
[11] Noureddine Zahid,et al. A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..
[12] K. Kosmelj,et al. Aspect temporel des relations entre les variables hydriques du Haut-Rhône français , 1983 .
[13] Friedhelm Schwenker,et al. Classification of bioacoustic time series based on the combination of global and local decisions , 2004, Pattern Recognit..
[14] Paola Sebastiani,et al. Cluster analysis of gene expression dynamics , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[15] Amir B. Geva. Hierarchical-fuzzy clustering of temporal-patterns and its application for time-series prediction , 1999, Pattern Recognit. Lett..
[16] R. J Muirhead,et al. A Bayesian classification of heart rate variability data , 2004 .
[17] E. E. Zhuk. Cluster Analysis of the Realizations of Autoregression Time Series , 2003 .
[18] Paul R. Cohen,et al. Bayesian Clustering by Dynamics Contents 1 Introduction 1 2 Clustering Markov Chains 2 , 2022 .
[19] James M. Landwehr,et al. Analyzing Clustering Effects across Time , 1980 .
[20] S. Ruan,et al. On the number of clusters and the fuzziness index for unsupervised FCA of BOLD fMRI time series , 2000, NeuroImage.
[21] H. Tong,et al. Cluster of time series models: an example , 1990 .
[22] Y. Ohashi. Fuzzy Clustering and Robust Estimation , 1984 .
[23] Miin-Shen Yang,et al. A similarity-based robust clustering method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Pierpaolo D'Urso,et al. Dissimilarity measures for time trajectories , 2000 .
[25] Rajesh N. Davé,et al. Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..
[26] Pierpaolo D'Urso,et al. The Geometric Approach to the Comparison of Multivariate Time Trajectories , 2001 .
[27] Elizabeth Ann Maharaj,et al. Cluster of Time Series , 2000, J. Classif..
[28] Richard J. Povinelli,et al. Time series classification using Gaussian mixture models of reconstructed phase spaces , 2004, IEEE Transactions on Knowledge and Data Engineering.
[29] Elizabeth Ann Maharaj,et al. A SIGNIFICANCE TEST FOR CLASSIFYING ARMA MODELS , 1996 .
[30] A. Keller. Fuzzy clustering with outliers , 2000, PeachFuzz 2000. 19th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.00TH8500).
[31] Augusto Y. Hermosilla,et al. Clustering Panel Data via perturbed Adaptive Simulated Annealing and Genetic Algorithms , 2002, Adv. Complex Syst..
[32] Amir B. Geva,et al. Nonstationary time series analysis by temporal clustering , 2000, IEEE Trans. Syst. Man Cybern. Part B.
[33] Olfa Nasraoui,et al. A Brief Overview of Robust Clustering Techniques , .
[34] Pierpaolo D'Urso,et al. Three-way fuzzy clustering models for LR fuzzy time trajectories , 2003, Comput. Stat. Data Anal..
[35] L. K. Hansen,et al. On Clustering fMRI Time Series , 1999, NeuroImage.
[36] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[37] Sheng-De Wang,et al. Competitive algorithms for the clustering of noisy data , 2004, Fuzzy Sets Syst..
[38] Jacek M. Leski,et al. Towards a robust fuzzy clustering , 2003, Fuzzy Sets Syst..
[39] Rajesh N. Davé,et al. Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..
[40] Dit-Yan Yeung,et al. Time series clustering with ARMA mixtures , 2004, Pattern Recognit..
[41] R. Shumway. Time-frequency clustering and discriminant analysis , 2003 .
[42] G. P. King,et al. Using cluster analysis to classify time series , 1992 .
[43] James C. Bezdek,et al. Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..
[44] Paul R. Kersten,et al. Fuzzy order statistics and their application to fuzzy clustering , 1999, IEEE Trans. Fuzzy Syst..
[45] Yoshiharu Sato,et al. A Dynamic Additive Fuzzy Clustering Model , 1998 .
[46] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..
[47] Catherine A. Sugar,et al. Clustering for Sparsely Sampled Functional Data , 2003 .
[48] Axel Wismüller,et al. Cluster Analysis of Biomedical Image Time-Series , 2002, International Journal of Computer Vision.
[49] Shokri Z. Selim,et al. Soft clustering of multidimensional data: a semi-fuzzy approach , 1984, Pattern Recognit..
[50] Miin-Shen Yang,et al. Alternative c-means clustering algorithms , 2002, Pattern Recognit..
[51] Xiaomin Liu,et al. A Least Biased Fuzzy Clustering Method , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[52] Gareth M. James,et al. Functional linear discriminant analysis for irregularly sampled curves , 2001 .
[53] George M. Church,et al. Aligning gene expression time series with time warping algorithms , 2001, Bioinform..
[54] Richard J. Martin. A metric for ARMA processes , 2000, IEEE Trans. Signal Process..
[55] Anupam Joshi,et al. Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..
[56] Paul R. Cohen,et al. Using Dynamic Time Warping to Bootstrap HMM-Based Clustering of Time Series , 2001, Sequence Learning.
[57] Rajesh N. Dave,et al. Robust shape detection using fuzzy clustering: practical applications , 1994, CVPR 1994.
[58] Rajesh N. Davé,et al. Robust fuzzy clustering of relational data , 2002, IEEE Trans. Fuzzy Syst..
[59] Athanasios Kehagias,et al. Predictive Modular Neural Networks for Time Series Classification , 1997, Neural Networks.
[60] Andrew A. Goldenberg,et al. A fuzzy noise-rejection data partitioning algorithm , 2005, Int. J. Approx. Reason..
[61] Christoph Heitz. Classification of Time Series with Optimized Time-Frequency Representations , 1996 .
[62] Masanobu Taniguchi,et al. DISCRIMINANT ANALYSIS FOR STATIONARY VECTOR TIME SERIES , 1994 .
[63] Olfa Nasraoui,et al. An improved possibilistic C-Means algorithm with finite rejection and robust scale estimation , 1996, Proceedings of North American Fuzzy Information Processing.
[64] Peter J. W. Rayner,et al. Unsupervised time series classification , 1995, Signal Process..
[65] Mauro Barni,et al. Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..
[66] Lalit Gupta,et al. Classification of temporal sequences via prediction using the simple recurrent neural network , 2000, Pattern Recognit..
[67] K. Jajuga. L 1 -norm based fuzzy clustering , 1991 .
[68] Jongwoo Kim,et al. Application of the least trimmed squares technique to prototype-based clustering , 1996, Pattern Recognit. Lett..
[69] Yoshiharu Sato,et al. On a multicriteria fuzzy Clustering Method for 3-Way Data , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[70] Thaddeus Tarpey,et al. Clustering Functional Data , 2003, J. Classif..
[71] Masanobu Taniguchi,et al. Nonparametric approach for discriminant analysis in time series , 1995 .
[72] S. Ruan,et al. A multistep Unsupervised Fuzzy Clustering Analysis of fMRI time series , 2000, Human brain mapping.
[73] Donald J. Berndt,et al. Finding Patterns in Time Series: A Dynamic Programming Approach , 1996, Advances in Knowledge Discovery and Data Mining.
[74] Akira Tanaka,et al. A method of identifying influential data in fuzzy clustering , 1998, IEEE Trans. Fuzzy Syst..
[75] K. Kosmelj,et al. Cross-sectional approach for clustering time varying data , 1990 .
[76] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[77] Ph. Casin. L'analyse discriminante de tableaux évolutifs , 1995 .
[78] Konstantinos N. Plataniotis,et al. A new time series classification approach , 1996, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.