Fuzzy Clustering for Data Time Arrays With Inlier and Outlier Time Trajectories

In many knowledge discovery and data mining tasks, fuzzy clustering is one of the most common tools for data partitioning. In this paper dynamic fuzzy clustering models for classifying a set of multivariate time trajectories (time series, sequences) are developed. In particular, by adopting an exploratory approach, based on a geometric-algebraic formulation of the data time array, different kinds of dynamic fuzzy clustering models, based on cross sectional and longitudinal aspects, are suggested. Furthermore, a modified version of the previous clustering models, that can be seen as a generalization of these models, is proposed. By utilizing these models we can obtain beneficial effects in the clustering process when anomalous trajectories (trajectories with anomalous positions and slopes) are present in the dataset; in fact the models are suitable for detecting structures of time trajectories with anomalous patterns that are not uniformly distributed over the structure's domains and are characterized by strange slopes. In these models, the disruptive effect of the anomalous trajectories is neutralized and smoothed and the information on the influence of individual time trajectories on the detected groups is given. Furthermore, some remarks on dynamic three-way extensions of a few robust fuzzy clustering models for two-way data are suggested. Demonstrative examples are shown and a comparison assessment based on artificial multivariate time-varying data is carried out

[1]  R. Shumway,et al.  Linear Discriminant Functions for Stationary Time Series , 1974 .

[2]  D. Piccolo A DISTANCE MEASURE FOR CLASSIFYING ARIMA MODELS , 1990 .

[3]  Robert H. Shumway,et al.  Discrimination and Clustering for Multivariate Time Series , 1998 .

[4]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Katarina Košmelj A two‐step procedure for clustering time varying data , 1986 .

[6]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[7]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[8]  J. Cauquil,et al.  Une analyse discriminante sur données longitudinales , 1999 .

[9]  Elizabeth Ann Maharaj,et al.  Comparison and classification of stationary multivariate time series , 1999, Pattern Recognit..

[10]  Claus Svarer,et al.  Cluster analysis of activity‐time series in motor learning , 2002, Human brain mapping.

[11]  Noureddine Zahid,et al.  A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..

[12]  K. Kosmelj,et al.  Aspect temporel des relations entre les variables hydriques du Haut-Rhône français , 1983 .

[13]  Friedhelm Schwenker,et al.  Classification of bioacoustic time series based on the combination of global and local decisions , 2004, Pattern Recognit..

[14]  Paola Sebastiani,et al.  Cluster analysis of gene expression dynamics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Amir B. Geva Hierarchical-fuzzy clustering of temporal-patterns and its application for time-series prediction , 1999, Pattern Recognit. Lett..

[16]  R. J Muirhead,et al.  A Bayesian classification of heart rate variability data , 2004 .

[17]  E. E. Zhuk Cluster Analysis of the Realizations of Autoregression Time Series , 2003 .

[18]  Paul R. Cohen,et al.  Bayesian Clustering by Dynamics Contents 1 Introduction 1 2 Clustering Markov Chains 2 , 2022 .

[19]  James M. Landwehr,et al.  Analyzing Clustering Effects across Time , 1980 .

[20]  S. Ruan,et al.  On the number of clusters and the fuzziness index for unsupervised FCA of BOLD fMRI time series , 2000, NeuroImage.

[21]  H. Tong,et al.  Cluster of time series models: an example , 1990 .

[22]  Y. Ohashi Fuzzy Clustering and Robust Estimation , 1984 .

[23]  Miin-Shen Yang,et al.  A similarity-based robust clustering method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Pierpaolo D'Urso,et al.  Dissimilarity measures for time trajectories , 2000 .

[25]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[26]  Pierpaolo D'Urso,et al.  The Geometric Approach to the Comparison of Multivariate Time Trajectories , 2001 .

[27]  Elizabeth Ann Maharaj,et al.  Cluster of Time Series , 2000, J. Classif..

[28]  Richard J. Povinelli,et al.  Time series classification using Gaussian mixture models of reconstructed phase spaces , 2004, IEEE Transactions on Knowledge and Data Engineering.

[29]  Elizabeth Ann Maharaj,et al.  A SIGNIFICANCE TEST FOR CLASSIFYING ARMA MODELS , 1996 .

[30]  A. Keller Fuzzy clustering with outliers , 2000, PeachFuzz 2000. 19th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.00TH8500).

[31]  Augusto Y. Hermosilla,et al.  Clustering Panel Data via perturbed Adaptive Simulated Annealing and Genetic Algorithms , 2002, Adv. Complex Syst..

[32]  Amir B. Geva,et al.  Nonstationary time series analysis by temporal clustering , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Olfa Nasraoui,et al.  A Brief Overview of Robust Clustering Techniques , .

[34]  Pierpaolo D'Urso,et al.  Three-way fuzzy clustering models for LR fuzzy time trajectories , 2003, Comput. Stat. Data Anal..

[35]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[36]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[37]  Sheng-De Wang,et al.  Competitive algorithms for the clustering of noisy data , 2004, Fuzzy Sets Syst..

[38]  Jacek M. Leski,et al.  Towards a robust fuzzy clustering , 2003, Fuzzy Sets Syst..

[39]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[40]  Dit-Yan Yeung,et al.  Time series clustering with ARMA mixtures , 2004, Pattern Recognit..

[41]  R. Shumway Time-frequency clustering and discriminant analysis , 2003 .

[42]  G. P. King,et al.  Using cluster analysis to classify time series , 1992 .

[43]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[44]  Paul R. Kersten,et al.  Fuzzy order statistics and their application to fuzzy clustering , 1999, IEEE Trans. Fuzzy Syst..

[45]  Yoshiharu Sato,et al.  A Dynamic Additive Fuzzy Clustering Model , 1998 .

[46]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[47]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[48]  Axel Wismüller,et al.  Cluster Analysis of Biomedical Image Time-Series , 2002, International Journal of Computer Vision.

[49]  Shokri Z. Selim,et al.  Soft clustering of multidimensional data: a semi-fuzzy approach , 1984, Pattern Recognit..

[50]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[51]  Xiaomin Liu,et al.  A Least Biased Fuzzy Clustering Method , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[53]  George M. Church,et al.  Aligning gene expression time series with time warping algorithms , 2001, Bioinform..

[54]  Richard J. Martin A metric for ARMA processes , 2000, IEEE Trans. Signal Process..

[55]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[56]  Paul R. Cohen,et al.  Using Dynamic Time Warping to Bootstrap HMM-Based Clustering of Time Series , 2001, Sequence Learning.

[57]  Rajesh N. Dave,et al.  Robust shape detection using fuzzy clustering: practical applications , 1994, CVPR 1994.

[58]  Rajesh N. Davé,et al.  Robust fuzzy clustering of relational data , 2002, IEEE Trans. Fuzzy Syst..

[59]  Athanasios Kehagias,et al.  Predictive Modular Neural Networks for Time Series Classification , 1997, Neural Networks.

[60]  Andrew A. Goldenberg,et al.  A fuzzy noise-rejection data partitioning algorithm , 2005, Int. J. Approx. Reason..

[61]  Christoph Heitz Classification of Time Series with Optimized Time-Frequency Representations , 1996 .

[62]  Masanobu Taniguchi,et al.  DISCRIMINANT ANALYSIS FOR STATIONARY VECTOR TIME SERIES , 1994 .

[63]  Olfa Nasraoui,et al.  An improved possibilistic C-Means algorithm with finite rejection and robust scale estimation , 1996, Proceedings of North American Fuzzy Information Processing.

[64]  Peter J. W. Rayner,et al.  Unsupervised time series classification , 1995, Signal Process..

[65]  Mauro Barni,et al.  Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..

[66]  Lalit Gupta,et al.  Classification of temporal sequences via prediction using the simple recurrent neural network , 2000, Pattern Recognit..

[67]  K. Jajuga L 1 -norm based fuzzy clustering , 1991 .

[68]  Jongwoo Kim,et al.  Application of the least trimmed squares technique to prototype-based clustering , 1996, Pattern Recognit. Lett..

[69]  Yoshiharu Sato,et al.  On a multicriteria fuzzy Clustering Method for 3-Way Data , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[70]  Thaddeus Tarpey,et al.  Clustering Functional Data , 2003, J. Classif..

[71]  Masanobu Taniguchi,et al.  Nonparametric approach for discriminant analysis in time series , 1995 .

[72]  S. Ruan,et al.  A multistep Unsupervised Fuzzy Clustering Analysis of fMRI time series , 2000, Human brain mapping.

[73]  Donald J. Berndt,et al.  Finding Patterns in Time Series: A Dynamic Programming Approach , 1996, Advances in Knowledge Discovery and Data Mining.

[74]  Akira Tanaka,et al.  A method of identifying influential data in fuzzy clustering , 1998, IEEE Trans. Fuzzy Syst..

[75]  K. Kosmelj,et al.  Cross-sectional approach for clustering time varying data , 1990 .

[76]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[77]  Ph. Casin L'analyse discriminante de tableaux évolutifs , 1995 .

[78]  Konstantinos N. Plataniotis,et al.  A new time series classification approach , 1996, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.