Knowledge pairing systems in granular computing

In Pawlaks theory of information systems, one has a collection of objects and knows the values of any object with respect a certain class of properties, usually called attributes. An implicit assumption of this theory is that the difference between the nature of objects and attributes is well outlined. In our paper we generalize the concept of information system by analyzing the case in which there is no a priori distinction in the nature of objects and attributes and, hence, both the interpretations are admissible. We call the structure arising in the previous context knowledge pairing system. We study the indiscernibility relations induced in both the admissible interpretations by means of up-down operators, in such a way to have a direct analogy with the extent and intent operators used in Formal Context Analysis. In particular, we investigate three models of knowledge pairing systems arising from real contexts and modeled respectively by graphs, digraphs and hypergraphs. We show the real convenience to use the notion of knowledge pairing system focusing on interpretation of this structure and discussing the two admissible perspectives obtained by avoiding the difference between the roles of objects and attributes.

[1]  Gianpiero Cattaneo,et al.  Generalized Rough Sets (Preclusivity Fuzzy-Intuitionistic (BZ) Lattices) , 1997, Stud Logica.

[2]  Michael R. Lyu,et al.  The generalized dependency degree between attributes , 2007 .

[3]  Silvia M. Sanahuja,et al.  A Computational Tool for Some Boolean Partial Maps , 2015 .

[4]  Hui Li,et al.  Connectedness of Graph and Matroid by Covering-Based Rough Sets , 2015, RSFDGrC.

[5]  William Zhu,et al.  The Matroidal Structures of the Second Type of Covering-Based Rough Set , 2015, RSKT.

[6]  Yiyu Yao,et al.  The two sides of the theory of rough sets , 2015, Knowl. Based Syst..

[7]  Witold Pedrycz,et al.  Granular representation and granular computing with fuzzy sets , 2012, Fuzzy Sets Syst..

[8]  Juan A. Aledo,et al.  Graph Dynamical Systems with General Boolean States , 2015 .

[9]  Tsau Young Lin,et al.  Unifying Rough Set Theories via Large Scaled Granular Computing , 2013, Fundam. Informaticae.

[10]  Giampiero Chiaselotti,et al.  Sand Piles Models of Signed Partitions with Piles , 2013 .

[11]  Giampiero Chiaselotti,et al.  Dominance order on signed integer partitions , 2017 .

[12]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[13]  Witold Pedrycz,et al.  Granular Computing: Analysis and Design of Intelligent Systems , 2013 .

[14]  Andrzej Skowron,et al.  Interactive information systems: Toward perception based computing , 2012, Theor. Comput. Sci..

[15]  Xiangping Kang,et al.  Formal concept analysis based on fuzzy granularity base for different granulations , 2012, Fuzzy Sets Syst..

[16]  Tsau Young Lin,et al.  Granular and rough computing on covering , 2012, 2012 IEEE International Conference on Granular Computing.

[17]  Davide Ciucci,et al.  Rough Set Theory and Digraphs , 2017, Fundam. Informaticae.

[18]  J. Stepaniuk Rough – Granular Computing in Knowledge Discovery and Data Mining , 2008 .

[19]  Tsau Young Lin,et al.  Data Mining: Granular Computing Approach , 1999, PAKDD.

[20]  John G. Stell Relations on Hypergraphs , 2012, RAMICS.

[21]  Aiping Huang,et al.  Nullity-based matroid of rough sets and its application to attribute reduction , 2014, Inf. Sci..

[22]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[23]  Davide Ciucci,et al.  Rough Set Theory Applied to Simple Undirected Graphs , 2015, RSKT.

[24]  William Zhu,et al.  On the matroidal structure of generalized rough set based on relation via definable sets , 2016, Int. J. Mach. Learn. Cybern..

[25]  Witold Pedrycz,et al.  Granular Computing - The Emerging Paradigm , 2007 .

[26]  Silvia Martínez Sanahuja,et al.  New rough approximations for n-cycles and n-paths , 2016, Appl. Math. Comput..

[27]  Juan A. Aledo,et al.  Parallel Dynamical Systems over Graphs and Related Topics: A Survey , 2015, J. Appl. Math..

[28]  Davide Ciucci,et al.  The granular partition lattice of an information table , 2016, Inf. Sci..

[29]  Gianpiero Cattaneo,et al.  An Investigation About Rough Set Theory: Some Foundational and Mathematical Aspects , 2011, Fundam. Informaticae.

[30]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[31]  John G. Stell,et al.  Formal Concept Analysis over Graphs and Hypergraphs , 2013, GKR.

[32]  Tsau Young Lin,et al.  Data Mining and Machine Oriented Modeling: A Granular Computing Approach , 2000, Applied Intelligence.

[33]  William Zhu,et al.  Matrix approaches to rough sets through vector matroids over fields , 2014, Int. J. Granul. Comput. Rough Sets Intell. Syst..

[34]  Yiyu Yao,et al.  On modeling data mining with granular computing , 2001, 25th Annual International Computer Software and Applications Conference. COMPSAC 2001.

[35]  Yiyu Yao,et al.  Discernibility matrix simplification for constructing attribute reducts , 2009, Inf. Sci..

[36]  Guo-Jun Wang,et al.  An axiomatic approach of fuzzy rough sets based on residuated lattices , 2009, Comput. Math. Appl..

[37]  John G. Stell Relational Granularity for Hypergraphs , 2010, RSCTC.

[38]  Davide Ciucci,et al.  Micro and macro models of granular computing induced by the indiscernibility relation , 2017, Inf. Sci..

[39]  John G. Stell,et al.  Relations in Mathematical Morphology with Applications to Graphs and Rough Sets , 2007, COSIT.

[40]  Claude Berge,et al.  Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.

[41]  Yiyu Yao,et al.  A Partition Model of Granular Computing , 2004, Trans. Rough Sets.

[42]  Davide Ciucci,et al.  Temporal Dynamics in Information Tables , 2012, Fundam. Informaticae.

[43]  Davide Ciucci,et al.  Simple graphs in granular computing , 2016, Inf. Sci..

[44]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[45]  William Zhu,et al.  Rough matroids based on relations , 2013, Inf. Sci..

[46]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[47]  Yiyu Yao,et al.  A Granular Computing Approach to Machine Learning , 2002, FSKD.

[48]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[49]  Piotr Honko,et al.  Relational pattern updating , 2012, Inf. Sci..

[50]  Gianpiero Cattaneo,et al.  Abstract Approximation Spaces for Rough Theories , 2008 .

[51]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[52]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[53]  Davide Ciucci,et al.  Generalizations of Rough Set Tools Inspired by Graph Theory , 2016, Fundam. Informaticae.

[54]  Giampiero Chiaselotti,et al.  Rough Sets for n-Cycles and n-Paths , 2016 .

[55]  Gianpiero Cattaneo,et al.  Non Uniform Cellular Automata Description of Signed Partition Versions of Ice and Sand Pile Models , 2014, ACRI.

[56]  Y. Yao Information granulation and rough set approximation , 2001 .

[57]  Davide Ciucci,et al.  Simple Undirected Graphs as Formal Contexts , 2015, ICFCA.

[58]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[59]  Tsau Young Lin,et al.  Unifying Variable Precision and Classical Rough Sets: Granular Approach , 2013, Rough Sets and Intelligent Systems.

[60]  Qing Liu,et al.  Granular computing approach to finding association rules in relational database , 2010 .

[61]  Witold Pedrycz,et al.  Positive approximation: An accelerator for attribute reduction in rough set theory , 2010, Artif. Intell..

[62]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[63]  R. P. Dilworth Review: G. Birkhoff, Lattice theory , 1950 .

[64]  Andrzej Skowron,et al.  Information systems in modeling interactive computations on granules , 2010, Theor. Comput. Sci..

[65]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[66]  Yee Leung,et al.  Granular Computing and Knowledge Reduction in Formal Contexts , 2009, IEEE Transactions on Knowledge and Data Engineering.

[67]  Gianpiero Cattaneo,et al.  The Lattice Structure of Equally Extended Signed Partitions , 2015, Fundam. Informaticae.

[68]  Piotr Honko,et al.  Association discovery from relational data via granular computing , 2013, Inf. Sci..

[69]  Piotr Honko,et al.  Description and classification of complex structured objects by applying similarity measures , 2008, Int. J. Approx. Reason..

[70]  Davide Ciucci,et al.  Preclusivity and Simple Graphs , 2015, RSFDGrC.

[71]  Giampiero Chiaselotti,et al.  A Class of lattices and boolean functions related to a Manickam-Mikl\ , 2010, 1004.1724.

[72]  Jinkun Chen,et al.  An application of rough sets to graph theory , 2012, Inf. Sci..

[73]  John G. Stell,et al.  Granulation for Graphs , 1999, COSIT.

[74]  Yiyu Yao,et al.  Covering based rough set approximations , 2012, Inf. Sci..

[75]  Davide Ciucci,et al.  Preclusivity and Simple Graphs: The n-cycle and n-path Cases , 2015, RSFDGrC.

[76]  Giuseppe Marino,et al.  A natural extension of the Young partition lattice , 2015 .

[77]  Gianpiero Cattaneo,et al.  A new discrete dynamical system of signed integer partitions , 2016, Eur. J. Comb..

[78]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[79]  Gianpiero Cattaneo,et al.  On the connection of hypergraph theory with formal concept analysis and rough set theory , 2016, Inf. Sci..

[80]  Yiyu Yao,et al.  A hypergraph model of granular computing , 2008, 2008 IEEE International Conference on Granular Computing.