Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves

An exact specification of the rotation-minimizing frame on a spatial Pythagorean-hodograph (PH) curve can be derived by integration of a rational function. The result is an angular function θ( t ) of the curve parameter, comprising in general both rational and logarithmic terms, that specifies the orientation of the rotation-minimizing frame relative to the Frenet frame. For PH cubics and quintics, the solution employs only arithmetic operations on the curve coefficients and some complex square and cube root extractions. Moreover, the generalization to PH curves of arbitrary order entails only standard polynomial algorithms (i.e., arithmetic, greatest common divisors, and resultants), solution of a linear system, and a minimal element of polynomial root-solving. Rotation-minimizing frames are employed in computer animation, the construction of swept surfaces, and in robotics applications where the axis of a tool or probe should remain tangential to a given spatial path while minimizing changes of orientation about this axis.

[1]  Barry M. Trager,et al.  Algebraic factoring and rational function integration , 1976, SYMSAC '76.

[2]  Bahram Ravani,et al.  Curves with rational Frenet-Serret motion , 1997, Comput. Aided Geom. Des..

[3]  Rida T. Farouki,et al.  Structural invariance of spatial Pythagorean hodographs , 2002, Comput. Aided Geom. Des..

[4]  Bert Jüttler Generating rational frames of space curves via hermite interpolation with Pythagorean hodograph cubic splines , 1998 .

[5]  Hyeong In Choi,et al.  Euler-Rodrigues frames on spatial Pythagorean-hodograph curves , 2002, Comput. Aided Geom. Des..

[6]  Bert Jüttler,et al.  Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling , 1999, Comput. Aided Des..

[7]  J. Calmet Computer Algebra , 1982 .

[8]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[9]  Rida T. Farouki,et al.  Real-time CNC interpolators for Pythagorean-hodograph curves , 1996, Comput. Aided Geom. Des..

[10]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[11]  Hwan Pyo Moon,et al.  Clifford Algebra, Spin Representation, and Rational Parameterization of Curves and Surfaces , 2002, Adv. Comput. Math..

[12]  Rida T. Farouki,et al.  Construction ofC2 Pythagorean-hodograph interpolating splines by the homotopy method , 1996, Adv. Comput. Math..

[13]  Michael Rothstein Aspects of symbolic integration and simplification of exponential and primitive functions. , 1976 .

[14]  B. Jüttler,et al.  Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics , 1999 .

[15]  H. GUGGENHEIMER Computing frames along a trajectory , 1989, Comput. Aided Geom. Des..

[16]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[17]  Fopke Klok Two moving coordinate frames for sweeping along a 3D trajectory , 1986, Comput. Aided Geom. Des..

[18]  R. Bishop There is More than One Way to Frame a Curve , 1975 .

[19]  Barry Joe,et al.  Robust computation of the rotation minimizing frame for sweep surface modeling , 1997, Comput. Aided Des..

[20]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[21]  Rida T. Farouki,et al.  Performance analysis of CNC interpolators for time-dependent feedrates along PH curves , 2001, Comput. Aided Geom. Des..

[22]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[23]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[24]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[25]  E. Horowitz Algorithms for partial fraction decomposition and rational function integration , 1971, SYMSAC '71.

[26]  Robert E. Barnhill,et al.  Geometry Processing for Design and Manufacturing , 1992 .

[27]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[28]  Rida T. Farouki,et al.  Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves , 1998, Comput. Aided Des..